1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
# Author: Gael Varoquaux
# License: BSD 3 clause
import sys
import numpy as np
import scipy.sparse as sp
import sklearn
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_warns_message
from sklearn.base import BaseEstimator, clone, is_classifier
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn import datasets
from sklearn.utils import deprecated
from sklearn.base import TransformerMixin
from sklearn.utils.mocking import MockDataFrame
import pickle
#############################################################################
# A few test classes
class MyEstimator(BaseEstimator):
def __init__(self, l1=0, empty=None):
self.l1 = l1
self.empty = empty
class K(BaseEstimator):
def __init__(self, c=None, d=None):
self.c = c
self.d = d
class T(BaseEstimator):
def __init__(self, a=None, b=None):
self.a = a
self.b = b
class ModifyInitParams(BaseEstimator):
"""Deprecated behavior.
Equal parameters but with a type cast.
Doesn't fulfill a is a
"""
def __init__(self, a=np.array([0])):
self.a = a.copy()
class DeprecatedAttributeEstimator(BaseEstimator):
def __init__(self, a=None, b=None):
self.a = a
if b is not None:
DeprecationWarning("b is deprecated and renamed 'a'")
self.a = b
@property
@deprecated("Parameter 'b' is deprecated and renamed to 'a'")
def b(self):
return self._b
class Buggy(BaseEstimator):
" A buggy estimator that does not set its parameters right. "
def __init__(self, a=None):
self.a = 1
class NoEstimator(object):
def __init__(self):
pass
def fit(self, X=None, y=None):
return self
def predict(self, X=None):
return None
class VargEstimator(BaseEstimator):
"""scikit-learn estimators shouldn't have vargs."""
def __init__(self, *vargs):
pass
#############################################################################
# The tests
def test_clone():
# Tests that clone creates a correct deep copy.
# We create an estimator, make a copy of its original state
# (which, in this case, is the current state of the estimator),
# and check that the obtained copy is a correct deep copy.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
new_selector = clone(selector)
assert_true(selector is not new_selector)
assert_equal(selector.get_params(), new_selector.get_params())
selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
new_selector = clone(selector)
assert_true(selector is not new_selector)
def test_clone_2():
# Tests that clone doesn't copy everything.
# We first create an estimator, give it an own attribute, and
# make a copy of its original state. Then we check that the copy doesn't
# have the specific attribute we manually added to the initial estimator.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
selector.own_attribute = "test"
new_selector = clone(selector)
assert_false(hasattr(new_selector, "own_attribute"))
def test_clone_buggy():
# Check that clone raises an error on buggy estimators.
buggy = Buggy()
buggy.a = 2
assert_raises(RuntimeError, clone, buggy)
no_estimator = NoEstimator()
assert_raises(TypeError, clone, no_estimator)
varg_est = VargEstimator()
assert_raises(RuntimeError, clone, varg_est)
def test_clone_empty_array():
# Regression test for cloning estimators with empty arrays
clf = MyEstimator(empty=np.array([]))
clf2 = clone(clf)
assert_array_equal(clf.empty, clf2.empty)
clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]])))
clf2 = clone(clf)
assert_array_equal(clf.empty.data, clf2.empty.data)
def test_clone_nan():
# Regression test for cloning estimators with default parameter as np.nan
clf = MyEstimator(empty=np.nan)
clf2 = clone(clf)
assert_true(clf.empty is clf2.empty)
def test_clone_copy_init_params():
# test for deprecation warning when copying or casting an init parameter
est = ModifyInitParams()
message = ("Estimator ModifyInitParams modifies parameters in __init__. "
"This behavior is deprecated as of 0.18 and support "
"for this behavior will be removed in 0.20.")
assert_warns_message(DeprecationWarning, message, clone, est)
def test_clone_sparse_matrices():
sparse_matrix_classes = [
getattr(sp, name)
for name in dir(sp) if name.endswith('_matrix')]
PY26 = sys.version_info[:2] == (2, 6)
if PY26:
# sp.dok_matrix can not be deepcopied in Python 2.6
sparse_matrix_classes.remove(sp.dok_matrix)
for cls in sparse_matrix_classes:
sparse_matrix = cls(np.eye(5))
clf = MyEstimator(empty=sparse_matrix)
clf_cloned = clone(clf)
assert_true(clf.empty.__class__ is clf_cloned.empty.__class__)
assert_array_equal(clf.empty.toarray(), clf_cloned.empty.toarray())
def test_repr():
# Smoke test the repr of the base estimator.
my_estimator = MyEstimator()
repr(my_estimator)
test = T(K(), K())
assert_equal(
repr(test),
"T(a=K(c=None, d=None), b=K(c=None, d=None))"
)
some_est = T(a=["long_params"] * 1000)
assert_equal(len(repr(some_est)), 415)
def test_str():
# Smoke test the str of the base estimator
my_estimator = MyEstimator()
str(my_estimator)
def test_get_params():
test = T(K(), K())
assert_true('a__d' in test.get_params(deep=True))
assert_true('a__d' not in test.get_params(deep=False))
test.set_params(a__d=2)
assert_true(test.a.d == 2)
assert_raises(ValueError, test.set_params, a__a=2)
def test_get_params_deprecated():
# deprecated attribute should not show up as params
est = DeprecatedAttributeEstimator(a=1)
assert_true('a' in est.get_params())
assert_true('a' in est.get_params(deep=True))
assert_true('a' in est.get_params(deep=False))
assert_true('b' not in est.get_params())
assert_true('b' not in est.get_params(deep=True))
assert_true('b' not in est.get_params(deep=False))
def test_is_classifier():
svc = SVC()
assert_true(is_classifier(svc))
assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]})))
assert_true(is_classifier(Pipeline([('svc', svc)])))
assert_true(is_classifier(Pipeline(
[('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))])))
def test_set_params():
# test nested estimator parameter setting
clf = Pipeline([("svc", SVC())])
# non-existing parameter in svc
assert_raises(ValueError, clf.set_params, svc__stupid_param=True)
# non-existing parameter of pipeline
assert_raises(ValueError, clf.set_params, svm__stupid_param=True)
# we don't currently catch if the things in pipeline are estimators
# bad_pipeline = Pipeline([("bad", NoEstimator())])
# assert_raises(AttributeError, bad_pipeline.set_params,
# bad__stupid_param=True)
def test_score_sample_weight():
rng = np.random.RandomState(0)
# test both ClassifierMixin and RegressorMixin
estimators = [DecisionTreeClassifier(max_depth=2),
DecisionTreeRegressor(max_depth=2)]
sets = [datasets.load_iris(),
datasets.load_boston()]
for est, ds in zip(estimators, sets):
est.fit(ds.data, ds.target)
# generate random sample weights
sample_weight = rng.randint(1, 10, size=len(ds.target))
# check that the score with and without sample weights are different
assert_not_equal(est.score(ds.data, ds.target),
est.score(ds.data, ds.target,
sample_weight=sample_weight),
msg="Unweighted and weighted scores "
"are unexpectedly equal")
def test_clone_pandas_dataframe():
class DummyEstimator(BaseEstimator, TransformerMixin):
"""This is a dummy class for generating numerical features
This feature extractor extracts numerical features from pandas data
frame.
Parameters
----------
df: pandas data frame
The pandas data frame parameter.
Notes
-----
"""
def __init__(self, df=None, scalar_param=1):
self.df = df
self.scalar_param = scalar_param
def fit(self, X, y=None):
pass
def transform(self, X, y=None):
pass
# build and clone estimator
d = np.arange(10)
df = MockDataFrame(d)
e = DummyEstimator(df, scalar_param=1)
cloned_e = clone(e)
# the test
assert_true((e.df == cloned_e.df).values.all())
assert_equal(e.scalar_param, cloned_e.scalar_param)
class TreeNoVersion(DecisionTreeClassifier):
def __getstate__(self):
return self.__dict__
class TreeBadVersion(DecisionTreeClassifier):
def __getstate__(self):
return dict(self.__dict__.items(), _sklearn_version="something")
def test_pickle_version_warning():
# check that warnings are raised when unpickling in a different version
# first, check no warning when in the same version:
iris = datasets.load_iris()
tree = DecisionTreeClassifier().fit(iris.data, iris.target)
tree_pickle = pickle.dumps(tree)
assert_true(b"version" in tree_pickle)
assert_no_warnings(pickle.loads, tree_pickle)
# check that warning is raised on different version
tree = TreeBadVersion().fit(iris.data, iris.target)
tree_pickle_other = pickle.dumps(tree)
message = ("Trying to unpickle estimator TreeBadVersion from "
"version {0} when using version {1}. This might lead to "
"breaking code or invalid results. "
"Use at your own risk.".format("something",
sklearn.__version__))
assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other)
# check that not including any version also works:
# TreeNoVersion has no getstate, like pre-0.18
tree = TreeNoVersion().fit(iris.data, iris.target)
tree_pickle_noversion = pickle.dumps(tree)
assert_false(b"version" in tree_pickle_noversion)
message = message.replace("something", "pre-0.18")
message = message.replace("TreeBadVersion", "TreeNoVersion")
# check we got the warning about using pre-0.18 pickle
assert_warns_message(UserWarning, message, pickle.loads,
tree_pickle_noversion)
# check that no warning is raised for external estimators
TreeNoVersion.__module__ = "notsklearn"
assert_no_warnings(pickle.loads, tree_pickle_noversion)
|