File: test_cross_validation.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (1252 lines) | stat: -rw-r--r-- 47,914 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
"""Test the cross_validation module"""
from __future__ import division
import warnings

import numpy as np
from scipy.sparse import coo_matrix
from scipy.sparse import csr_matrix
from scipy import stats

from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.mocking import CheckingClassifier, MockDataFrame

with warnings.catch_warnings():
    warnings.simplefilter('ignore')
    from sklearn import cross_validation as cval

from sklearn.datasets import make_regression
from sklearn.datasets import load_boston
from sklearn.datasets import load_digits
from sklearn.datasets import load_iris
from sklearn.datasets import make_multilabel_classification
from sklearn.metrics import explained_variance_score
from sklearn.metrics import make_scorer
from sklearn.metrics import precision_score
from sklearn.externals import six
from sklearn.externals.six.moves import zip

from sklearn.linear_model import Ridge
from sklearn.multiclass import OneVsRestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.cluster import KMeans

from sklearn.preprocessing import Imputer
from sklearn.pipeline import Pipeline


class MockClassifier(object):
    """Dummy classifier to test the cross-validation"""

    def __init__(self, a=0, allow_nd=False):
        self.a = a
        self.allow_nd = allow_nd

    def fit(self, X, Y=None, sample_weight=None, class_prior=None,
            sparse_sample_weight=None, sparse_param=None, dummy_int=None,
            dummy_str=None, dummy_obj=None, callback=None):
        """The dummy arguments are to test that this fit function can
        accept non-array arguments through cross-validation, such as:
            - int
            - str (this is actually array-like)
            - object
            - function
        """
        self.dummy_int = dummy_int
        self.dummy_str = dummy_str
        self.dummy_obj = dummy_obj
        if callback is not None:
            callback(self)

        if self.allow_nd:
            X = X.reshape(len(X), -1)
        if X.ndim >= 3 and not self.allow_nd:
            raise ValueError('X cannot be d')
        if sample_weight is not None:
            assert_true(sample_weight.shape[0] == X.shape[0],
                        'MockClassifier extra fit_param sample_weight.shape[0]'
                        ' is {0}, should be {1}'.format(sample_weight.shape[0],
                                                        X.shape[0]))
        if class_prior is not None:
            assert_true(class_prior.shape[0] == len(np.unique(y)),
                        'MockClassifier extra fit_param class_prior.shape[0]'
                        ' is {0}, should be {1}'.format(class_prior.shape[0],
                                                        len(np.unique(y))))
        if sparse_sample_weight is not None:
            fmt = ('MockClassifier extra fit_param sparse_sample_weight'
                   '.shape[0] is {0}, should be {1}')
            assert_true(sparse_sample_weight.shape[0] == X.shape[0],
                        fmt.format(sparse_sample_weight.shape[0], X.shape[0]))
        if sparse_param is not None:
            fmt = ('MockClassifier extra fit_param sparse_param.shape '
                   'is ({0}, {1}), should be ({2}, {3})')
            assert_true(sparse_param.shape == P_sparse.shape,
                        fmt.format(sparse_param.shape[0],
                                   sparse_param.shape[1],
                                   P_sparse.shape[0], P_sparse.shape[1]))
        return self

    def predict(self, T):
        if self.allow_nd:
            T = T.reshape(len(T), -1)
        return T[:, 0]

    def score(self, X=None, Y=None):
        return 1. / (1 + np.abs(self.a))

    def get_params(self, deep=False):
        return {'a': self.a, 'allow_nd': self.allow_nd}

X = np.ones((10, 2))
X_sparse = coo_matrix(X)
W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))),
                      shape=(10, 1))
P_sparse = coo_matrix(np.eye(5))

# avoid StratifiedKFold's Warning about least populated class in y
y = np.arange(10) % 3

##############################################################################
# Tests


def check_valid_split(train, test, n_samples=None):
    # Use python sets to get more informative assertion failure messages
    train, test = set(train), set(test)

    # Train and test split should not overlap
    assert_equal(train.intersection(test), set())

    if n_samples is not None:
        # Check that the union of train an test split cover all the indices
        assert_equal(train.union(test), set(range(n_samples)))


def check_cv_coverage(cv, expected_n_iter=None, n_samples=None):
    # Check that a all the samples appear at least once in a test fold
    if expected_n_iter is not None:
        assert_equal(len(cv), expected_n_iter)
    else:
        expected_n_iter = len(cv)

    collected_test_samples = set()
    iterations = 0
    for train, test in cv:
        check_valid_split(train, test, n_samples=n_samples)
        iterations += 1
        collected_test_samples.update(test)

    # Check that the accumulated test samples cover the whole dataset
    assert_equal(iterations, expected_n_iter)
    if n_samples is not None:
        assert_equal(collected_test_samples, set(range(n_samples)))


def test_kfold_valueerrors():
    # Check that errors are raised if there is not enough samples
    assert_raises(ValueError, cval.KFold, 3, 4)

    # Check that a warning is raised if the least populated class has too few
    # members.
    y = [3, 3, -1, -1, 3]

    cv = assert_warns_message(Warning, "The least populated class",
                              cval.StratifiedKFold, y, 3)

    # Check that despite the warning the folds are still computed even
    # though all the classes are not necessarily represented at on each
    # side of the split at each split
    check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y))

    # Check that errors are raised if all n_labels for individual
    # classes are less than n_folds.
    y = [3, 3, -1, -1, 2]

    assert_raises(ValueError, cval.StratifiedKFold, y, 3)

    # Error when number of folds is <= 1
    assert_raises(ValueError, cval.KFold, 2, 0)
    assert_raises(ValueError, cval.KFold, 2, 1)
    error_string = ("k-fold cross validation requires at least one"
                    " train / test split")
    assert_raise_message(ValueError, error_string,
                         cval.StratifiedKFold, y, 0)
    assert_raise_message(ValueError, error_string,
                         cval.StratifiedKFold, y, 1)

    # When n is not integer:
    assert_raises(ValueError, cval.KFold, 2.5, 2)

    # When n_folds is not integer:
    assert_raises(ValueError, cval.KFold, 5, 1.5)
    assert_raises(ValueError, cval.StratifiedKFold, y, 1.5)


def test_kfold_indices():
    # Check all indices are returned in the test folds
    kf = cval.KFold(300, 3)
    check_cv_coverage(kf, expected_n_iter=3, n_samples=300)

    # Check all indices are returned in the test folds even when equal-sized
    # folds are not possible
    kf = cval.KFold(17, 3)
    check_cv_coverage(kf, expected_n_iter=3, n_samples=17)


def test_kfold_no_shuffle():
    # Manually check that KFold preserves the data ordering on toy datasets
    splits = iter(cval.KFold(4, 2))
    train, test = next(splits)
    assert_array_equal(test, [0, 1])
    assert_array_equal(train, [2, 3])

    train, test = next(splits)
    assert_array_equal(test, [2, 3])
    assert_array_equal(train, [0, 1])

    splits = iter(cval.KFold(5, 2))
    train, test = next(splits)
    assert_array_equal(test, [0, 1, 2])
    assert_array_equal(train, [3, 4])

    train, test = next(splits)
    assert_array_equal(test, [3, 4])
    assert_array_equal(train, [0, 1, 2])


def test_stratified_kfold_no_shuffle():
    # Manually check that StratifiedKFold preserves the data ordering as much
    # as possible on toy datasets in order to avoid hiding sample dependencies
    # when possible
    splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2))
    train, test = next(splits)
    assert_array_equal(test, [0, 2])
    assert_array_equal(train, [1, 3])

    train, test = next(splits)
    assert_array_equal(test, [1, 3])
    assert_array_equal(train, [0, 2])

    splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2))
    train, test = next(splits)
    assert_array_equal(test, [0, 1, 3, 4])
    assert_array_equal(train, [2, 5, 6])

    train, test = next(splits)
    assert_array_equal(test, [2, 5, 6])
    assert_array_equal(train, [0, 1, 3, 4])


def test_stratified_kfold_ratios():
    # Check that stratified kfold preserves label ratios in individual splits
    # Repeat with shuffling turned off and on
    n_samples = 1000
    labels = np.array([4] * int(0.10 * n_samples) +
                      [0] * int(0.89 * n_samples) +
                      [1] * int(0.01 * n_samples))
    for shuffle in [False, True]:
        for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle):
            assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10,
                                2)
            assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89,
                                2)
            assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01,
                                2)
            assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2)
            assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2)
            assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2)


def test_kfold_balance():
    # Check that KFold returns folds with balanced sizes
    for kf in [cval.KFold(i, 5) for i in range(11, 17)]:
        sizes = []
        for _, test in kf:
            sizes.append(len(test))

        assert_true((np.max(sizes) - np.min(sizes)) <= 1)
        assert_equal(np.sum(sizes), kf.n)


def test_stratifiedkfold_balance():
    # Check that KFold returns folds with balanced sizes (only when
    # stratification is possible)
    # Repeat with shuffling turned off and on
    labels = [0] * 3 + [1] * 14
    for shuffle in [False, True]:
        for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle)
                    for i in range(11, 17)]:
            sizes = []
            for _, test in skf:
                sizes.append(len(test))

            assert_true((np.max(sizes) - np.min(sizes)) <= 1)
            assert_equal(np.sum(sizes), skf.n)


def test_shuffle_kfold():
    # Check the indices are shuffled properly, and that all indices are
    # returned in the different test folds
    kf = cval.KFold(300, 3, shuffle=True, random_state=0)
    ind = np.arange(300)

    all_folds = None
    for train, test in kf:
        assert_true(np.any(np.arange(100) != ind[test]))
        assert_true(np.any(np.arange(100, 200) != ind[test]))
        assert_true(np.any(np.arange(200, 300) != ind[test]))

        if all_folds is None:
            all_folds = ind[test].copy()
        else:
            all_folds = np.concatenate((all_folds, ind[test]))

    all_folds.sort()
    assert_array_equal(all_folds, ind)


def test_shuffle_stratifiedkfold():
    # Check that shuffling is happening when requested, and for proper
    # sample coverage
    labels = [0] * 20 + [1] * 20
    kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0))
    kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1))
    for (_, test0), (_, test1) in zip(kf0, kf1):
        assert_true(set(test0) != set(test1))
    check_cv_coverage(kf0, expected_n_iter=5, n_samples=40)


def test_kfold_can_detect_dependent_samples_on_digits():  # see #2372
    # The digits samples are dependent: they are apparently grouped by authors
    # although we don't have any information on the groups segment locations
    # for this data. We can highlight this fact be computing k-fold cross-
    # validation with and without shuffling: we observe that the shuffling case
    # wrongly makes the IID assumption and is therefore too optimistic: it
    # estimates a much higher accuracy (around 0.96) than the non
    # shuffling variant (around 0.86).

    digits = load_digits()
    X, y = digits.data[:800], digits.target[:800]
    model = SVC(C=10, gamma=0.005)
    n = len(y)

    cv = cval.KFold(n, 5, shuffle=False)
    mean_score = cval.cross_val_score(model, X, y, cv=cv).mean()
    assert_greater(0.88, mean_score)
    assert_greater(mean_score, 0.85)

    # Shuffling the data artificially breaks the dependency and hides the
    # overfitting of the model with regards to the writing style of the authors
    # by yielding a seriously overestimated score:

    cv = cval.KFold(n, 5, shuffle=True, random_state=0)
    mean_score = cval.cross_val_score(model, X, y, cv=cv).mean()
    assert_greater(mean_score, 0.95)

    cv = cval.KFold(n, 5, shuffle=True, random_state=1)
    mean_score = cval.cross_val_score(model, X, y, cv=cv).mean()
    assert_greater(mean_score, 0.95)

    # Similarly, StratifiedKFold should try to shuffle the data as little
    # as possible (while respecting the balanced class constraints)
    # and thus be able to detect the dependency by not overestimating
    # the CV score either. As the digits dataset is approximately balanced
    # the estimated mean score is close to the score measured with
    # non-shuffled KFold

    cv = cval.StratifiedKFold(y, 5)
    mean_score = cval.cross_val_score(model, X, y, cv=cv).mean()
    assert_greater(0.88, mean_score)
    assert_greater(mean_score, 0.85)


def test_label_kfold():
    rng = np.random.RandomState(0)

    # Parameters of the test
    n_labels = 15
    n_samples = 1000
    n_folds = 5

    # Construct the test data
    tolerance = 0.05 * n_samples  # 5 percent error allowed
    labels = rng.randint(0, n_labels, n_samples)
    folds = cval.LabelKFold(labels, n_folds=n_folds).idxs
    ideal_n_labels_per_fold = n_samples // n_folds

    # Check that folds have approximately the same size
    assert_equal(len(folds), len(labels))
    for i in np.unique(folds):
        assert_greater_equal(tolerance,
                             abs(sum(folds == i) - ideal_n_labels_per_fold))

    # Check that each label appears only in 1 fold
    for label in np.unique(labels):
        assert_equal(len(np.unique(folds[labels == label])), 1)

    # Check that no label is on both sides of the split
    labels = np.asarray(labels, dtype=object)
    for train, test in cval.LabelKFold(labels, n_folds=n_folds):
        assert_equal(len(np.intersect1d(labels[train], labels[test])), 0)

    # Construct the test data
    labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean',
              'Francis', 'Robert', 'Michel', 'Rachel', 'Lois',
              'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean',
              'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix',
              'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky',
              'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis',
              'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia']
    labels = np.asarray(labels, dtype=object)

    n_labels = len(np.unique(labels))
    n_samples = len(labels)
    n_folds = 5
    tolerance = 0.05 * n_samples  # 5 percent error allowed
    folds = cval.LabelKFold(labels, n_folds=n_folds).idxs
    ideal_n_labels_per_fold = n_samples // n_folds

    # Check that folds have approximately the same size
    assert_equal(len(folds), len(labels))
    for i in np.unique(folds):
        assert_greater_equal(tolerance,
                             abs(sum(folds == i) - ideal_n_labels_per_fold))

    # Check that each label appears only in 1 fold
    for label in np.unique(labels):
        assert_equal(len(np.unique(folds[labels == label])), 1)

    # Check that no label is on both sides of the split
    for train, test in cval.LabelKFold(labels, n_folds=n_folds):
        assert_equal(len(np.intersect1d(labels[train], labels[test])), 0)

    # Should fail if there are more folds than labels
    labels = np.array([1, 1, 1, 2, 2])
    assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3)


def test_shuffle_split():
    ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0)
    ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0)
    ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0)
    for typ in six.integer_types:
        ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0)
    for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4):
        assert_array_equal(t1[0], t2[0])
        assert_array_equal(t2[0], t3[0])
        assert_array_equal(t3[0], t4[0])
        assert_array_equal(t1[1], t2[1])
        assert_array_equal(t2[1], t3[1])
        assert_array_equal(t3[1], t4[1])


def test_stratified_shuffle_split_init():
    y = np.asarray([0, 1, 1, 1, 2, 2, 2])
    # Check that error is raised if there is a class with only one sample
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2)

    # Check that error is raised if the test set size is smaller than n_classes
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2)
    # Check that error is raised if the train set size is smaller than
    # n_classes
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2)

    y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2])
    # Check that errors are raised if there is not enough samples
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6)
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6)
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8)

    # Train size or test size too small
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2)
    assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2)


def test_stratified_shuffle_split_iter():
    ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]),
          np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]),
          np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2),
          np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]),
          np.array([-1] * 800 + [1] * 50)
          ]

    for y in ys:
        sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33,
                                          random_state=0)
        test_size = np.ceil(0.33 * len(y))
        train_size = len(y) - test_size
        for train, test in sss:
            assert_array_equal(np.unique(y[train]), np.unique(y[test]))
            # Checks if folds keep classes proportions
            p_train = (np.bincount(np.unique(y[train],
                                   return_inverse=True)[1]) /
                       float(len(y[train])))
            p_test = (np.bincount(np.unique(y[test],
                                  return_inverse=True)[1]) /
                      float(len(y[test])))
            assert_array_almost_equal(p_train, p_test, 1)
            assert_equal(len(train) + len(test), y.size)
            assert_equal(len(train), train_size)
            assert_equal(len(test), test_size)
            assert_array_equal(np.lib.arraysetops.intersect1d(train, test), [])


def test_stratified_shuffle_split_even():
    # Test the StratifiedShuffleSplit, indices are drawn with a
    # equal chance
    n_folds = 5
    n_iter = 1000

    def assert_counts_are_ok(idx_counts, p):
        # Here we test that the distribution of the counts
        # per index is close enough to a binomial
        threshold = 0.05 / n_splits
        bf = stats.binom(n_splits, p)
        for count in idx_counts:
            p = bf.pmf(count)
            assert_true(p > threshold,
                        "An index is not drawn with chance corresponding "
                        "to even draws")

    for n_samples in (6, 22):
        labels = np.array((n_samples // 2) * [0, 1])
        splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter,
                                             test_size=1. / n_folds,
                                             random_state=0)

        train_counts = [0] * n_samples
        test_counts = [0] * n_samples
        n_splits = 0
        for train, test in splits:
            n_splits += 1
            for counter, ids in [(train_counts, train), (test_counts, test)]:
                for id in ids:
                    counter[id] += 1
        assert_equal(n_splits, n_iter)

        assert_equal(len(train), splits.n_train)
        assert_equal(len(test), splits.n_test)
        assert_equal(len(set(train).intersection(test)), 0)

        label_counts = np.unique(labels)
        assert_equal(splits.test_size, 1.0 / n_folds)
        assert_equal(splits.n_train + splits.n_test, len(labels))
        assert_equal(len(label_counts), 2)
        ex_test_p = float(splits.n_test) / n_samples
        ex_train_p = float(splits.n_train) / n_samples

        assert_counts_are_ok(train_counts, ex_train_p)
        assert_counts_are_ok(test_counts, ex_test_p)


def test_stratified_shuffle_split_overlap_train_test_bug():
    # See https://github.com/scikit-learn/scikit-learn/issues/6121 for
    # the original bug report
    labels = [0, 1, 2, 3] * 3 + [4, 5] * 5

    splits = cval.StratifiedShuffleSplit(labels, n_iter=1,
                                         test_size=0.5, random_state=0)
    train, test = next(iter(splits))

    assert_array_equal(np.intersect1d(train, test), [])


def test_predefinedsplit_with_kfold_split():
    # Check that PredefinedSplit can reproduce a split generated by Kfold.
    folds = -1 * np.ones(10)
    kf_train = []
    kf_test = []
    for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)):
        kf_train.append(train_ind)
        kf_test.append(test_ind)
        folds[test_ind] = i
    ps_train = []
    ps_test = []
    ps = cval.PredefinedSplit(folds)
    for train_ind, test_ind in ps:
        ps_train.append(train_ind)
        ps_test.append(test_ind)
    assert_array_equal(ps_train, kf_train)
    assert_array_equal(ps_test, kf_test)


def test_label_shuffle_split():
    ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]),
          np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]),
          np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]),
          np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]),
          ]

    for y in ys:
        n_iter = 6
        test_size = 1. / 3
        slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size,
                                     random_state=0)

        # Make sure the repr works
        repr(slo)

        # Test that the length is correct
        assert_equal(len(slo), n_iter)

        y_unique = np.unique(y)

        for train, test in slo:
            # First test: no train label is in the test set and vice versa
            y_train_unique = np.unique(y[train])
            y_test_unique = np.unique(y[test])
            assert_false(np.any(np.in1d(y[train], y_test_unique)))
            assert_false(np.any(np.in1d(y[test], y_train_unique)))

            # Second test: train and test add up to all the data
            assert_equal(y[train].size + y[test].size, y.size)

            # Third test: train and test are disjoint
            assert_array_equal(np.intersect1d(train, test), [])

            # Fourth test: # unique train and test labels are correct,
            #              +- 1 for rounding error
            assert_true(abs(len(y_test_unique) -
                            round(test_size * len(y_unique))) <= 1)
            assert_true(abs(len(y_train_unique) -
                            round((1.0 - test_size) * len(y_unique))) <= 1)


def test_leave_label_out_changing_labels():
    # Check that LeaveOneLabelOut and LeavePLabelOut work normally if
    # the labels variable is changed before calling __iter__
    labels = np.array([0, 1, 2, 1, 1, 2, 0, 0])
    labels_changing = np.array(labels, copy=True)
    lolo = cval.LeaveOneLabelOut(labels)
    lolo_changing = cval.LeaveOneLabelOut(labels_changing)
    lplo = cval.LeavePLabelOut(labels, p=2)
    lplo_changing = cval.LeavePLabelOut(labels_changing, p=2)
    labels_changing[:] = 0
    for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]:
        for (train, test), (train_chan, test_chan) in zip(llo, llo_changing):
            assert_array_equal(train, train_chan)
            assert_array_equal(test, test_chan)


def test_cross_val_score():
    clf = MockClassifier()
    for a in range(-10, 10):
        clf.a = a
        # Smoke test
        scores = cval.cross_val_score(clf, X, y)
        assert_array_equal(scores, clf.score(X, y))

        # test with multioutput y
        scores = cval.cross_val_score(clf, X_sparse, X)
        assert_array_equal(scores, clf.score(X_sparse, X))

        scores = cval.cross_val_score(clf, X_sparse, y)
        assert_array_equal(scores, clf.score(X_sparse, y))

        # test with multioutput y
        scores = cval.cross_val_score(clf, X_sparse, X)
        assert_array_equal(scores, clf.score(X_sparse, X))

    # test with X and y as list
    list_check = lambda x: isinstance(x, list)
    clf = CheckingClassifier(check_X=list_check)
    scores = cval.cross_val_score(clf, X.tolist(), y.tolist())

    clf = CheckingClassifier(check_y=list_check)
    scores = cval.cross_val_score(clf, X, y.tolist())

    assert_raises(ValueError, cval.cross_val_score, clf, X, y,
                  scoring="sklearn")

    # test with 3d X and
    X_3d = X[:, :, np.newaxis]
    clf = MockClassifier(allow_nd=True)
    scores = cval.cross_val_score(clf, X_3d, y)

    clf = MockClassifier(allow_nd=False)
    assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y)


def test_cross_val_score_pandas():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import Series, DataFrame
        types.append((Series, DataFrame))
    except ImportError:
        pass
    for TargetType, InputFeatureType in types:
        # X dataframe, y series
        X_df, y_ser = InputFeatureType(X), TargetType(y)
        check_df = lambda x: isinstance(x, InputFeatureType)
        check_series = lambda x: isinstance(x, TargetType)
        clf = CheckingClassifier(check_X=check_df, check_y=check_series)
        cval.cross_val_score(clf, X_df, y_ser)


def test_cross_val_score_mask():
    # test that cross_val_score works with boolean masks
    svm = SVC(kernel="linear")
    iris = load_iris()
    X, y = iris.data, iris.target
    cv_indices = cval.KFold(len(y), 5)
    scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices)
    cv_indices = cval.KFold(len(y), 5)
    cv_masks = []
    for train, test in cv_indices:
        mask_train = np.zeros(len(y), dtype=np.bool)
        mask_test = np.zeros(len(y), dtype=np.bool)
        mask_train[train] = 1
        mask_test[test] = 1
        cv_masks.append((train, test))
    scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks)
    assert_array_equal(scores_indices, scores_masks)


def test_cross_val_score_precomputed():
    # test for svm with precomputed kernel
    svm = SVC(kernel="precomputed")
    iris = load_iris()
    X, y = iris.data, iris.target
    linear_kernel = np.dot(X, X.T)
    score_precomputed = cval.cross_val_score(svm, linear_kernel, y)
    svm = SVC(kernel="linear")
    score_linear = cval.cross_val_score(svm, X, y)
    assert_array_equal(score_precomputed, score_linear)

    # Error raised for non-square X
    svm = SVC(kernel="precomputed")
    assert_raises(ValueError, cval.cross_val_score, svm, X, y)

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    assert_raises(ValueError, cval.cross_val_score, svm,
                  linear_kernel.tolist(), y)


def test_cross_val_score_fit_params():
    clf = MockClassifier()
    n_samples = X.shape[0]
    n_classes = len(np.unique(y))

    DUMMY_INT = 42
    DUMMY_STR = '42'
    DUMMY_OBJ = object()

    def assert_fit_params(clf):
        # Function to test that the values are passed correctly to the
        # classifier arguments for non-array type

        assert_equal(clf.dummy_int, DUMMY_INT)
        assert_equal(clf.dummy_str, DUMMY_STR)
        assert_equal(clf.dummy_obj, DUMMY_OBJ)

    fit_params = {'sample_weight': np.ones(n_samples),
                  'class_prior': np.ones(n_classes) / n_classes,
                  'sparse_sample_weight': W_sparse,
                  'sparse_param': P_sparse,
                  'dummy_int': DUMMY_INT,
                  'dummy_str': DUMMY_STR,
                  'dummy_obj': DUMMY_OBJ,
                  'callback': assert_fit_params}
    cval.cross_val_score(clf, X, y, fit_params=fit_params)


def test_cross_val_score_score_func():
    clf = MockClassifier()
    _score_func_args = []

    def score_func(y_test, y_predict):
        _score_func_args.append((y_test, y_predict))
        return 1.0

    with warnings.catch_warnings(record=True):
        scoring = make_scorer(score_func)
        score = cval.cross_val_score(clf, X, y, scoring=scoring)
    assert_array_equal(score, [1.0, 1.0, 1.0])
    assert len(_score_func_args) == 3


def test_cross_val_score_errors():
    class BrokenEstimator:
        pass

    assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X)


def test_train_test_split_errors():
    assert_raises(ValueError, cval.train_test_split)
    assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1)
    assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6,
                  train_size=0.6)
    assert_raises(ValueError, cval.train_test_split, range(3),
                  test_size=np.float32(0.6), train_size=np.float32(0.6))
    assert_raises(ValueError, cval.train_test_split, range(3),
                  test_size="wrong_type")
    assert_raises(ValueError, cval.train_test_split, range(3), test_size=2,
                  train_size=4)
    assert_raises(TypeError, cval.train_test_split, range(3),
                  some_argument=1.1)
    assert_raises(ValueError, cval.train_test_split, range(3), range(42))


def test_train_test_split():
    X = np.arange(100).reshape((10, 10))
    X_s = coo_matrix(X)
    y = np.arange(10)

    # simple test
    split = cval.train_test_split(X, y, test_size=None, train_size=.5)
    X_train, X_test, y_train, y_test = split
    assert_equal(len(y_test), len(y_train))
    # test correspondence of X and y
    assert_array_equal(X_train[:, 0], y_train * 10)
    assert_array_equal(X_test[:, 0], y_test * 10)

    # conversion of lists to arrays (deprecated?)
    with warnings.catch_warnings(record=True):
        split = cval.train_test_split(X, X_s, y.tolist())
    X_train, X_test, X_s_train, X_s_test, y_train, y_test = split
    assert_array_equal(X_train, X_s_train.toarray())
    assert_array_equal(X_test, X_s_test.toarray())

    # don't convert lists to anything else by default
    split = cval.train_test_split(X, X_s, y.tolist())
    X_train, X_test, X_s_train, X_s_test, y_train, y_test = split
    assert_true(isinstance(y_train, list))
    assert_true(isinstance(y_test, list))

    # allow nd-arrays
    X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
    y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
    split = cval.train_test_split(X_4d, y_3d)
    assert_equal(split[0].shape, (7, 5, 3, 2))
    assert_equal(split[1].shape, (3, 5, 3, 2))
    assert_equal(split[2].shape, (7, 7, 11))
    assert_equal(split[3].shape, (3, 7, 11))

    # test stratification option
    y = np.array([1, 1, 1, 1, 2, 2, 2, 2])
    for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75],
                                        [2, 4, 2, 4, 6]):
        train, test = cval.train_test_split(y,
                                            test_size=test_size,
                                            stratify=y,
                                            random_state=0)
        assert_equal(len(test), exp_test_size)
        assert_equal(len(test) + len(train), len(y))
        # check the 1:1 ratio of ones and twos in the data is preserved
        assert_equal(np.sum(train == 1), np.sum(train == 2))


def train_test_split_pandas():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [MockDataFrame]
    try:
        from pandas import DataFrame
        types.append(DataFrame)
    except ImportError:
        pass
    for InputFeatureType in types:
        # X dataframe
        X_df = InputFeatureType(X)
        X_train, X_test = cval.train_test_split(X_df)
        assert_true(isinstance(X_train, InputFeatureType))
        assert_true(isinstance(X_test, InputFeatureType))

def train_test_split_mock_pandas():
    # X mock dataframe
    X_df = MockDataFrame(X)
    X_train, X_test = cval.train_test_split(X_df)
    assert_true(isinstance(X_train, MockDataFrame))
    assert_true(isinstance(X_test, MockDataFrame))


def test_cross_val_score_with_score_func_classification():
    iris = load_iris()
    clf = SVC(kernel='linear')

    # Default score (should be the accuracy score)
    scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5)
    assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # Correct classification score (aka. zero / one score) - should be the
    # same as the default estimator score
    zo_scores = cval.cross_val_score(clf, iris.data, iris.target,
                                     scoring="accuracy", cv=5)
    assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # F1 score (class are balanced so f1_score should be equal to zero/one
    # score
    f1_scores = cval.cross_val_score(clf, iris.data, iris.target,
                                     scoring="f1_weighted", cv=5)
    assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2)


def test_cross_val_score_with_score_func_regression():
    X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
                           random_state=0)
    reg = Ridge()

    # Default score of the Ridge regression estimator
    scores = cval.cross_val_score(reg, X, y, cv=5)
    assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)

    # R2 score (aka. determination coefficient) - should be the
    # same as the default estimator score
    r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5)
    assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)

    # Mean squared error; this is a loss function, so "scores" are negative
    neg_mse_scores = cval.cross_val_score(reg, X, y, cv=5,
                                          scoring="neg_mean_squared_error")
    expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
    assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)

    # Explained variance
    scoring = make_scorer(explained_variance_score)
    ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring)
    assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)


def test_permutation_score():
    iris = load_iris()
    X = iris.data
    X_sparse = coo_matrix(X)
    y = iris.target
    svm = SVC(kernel='linear')
    cv = cval.StratifiedKFold(y, 2)

    score, scores, pvalue = cval.permutation_test_score(
        svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
    assert_greater(score, 0.9)
    assert_almost_equal(pvalue, 0.0, 1)

    score_label, _, pvalue_label = cval.permutation_test_score(
        svm, X, y, n_permutations=30, cv=cv, scoring="accuracy",
        labels=np.ones(y.size), random_state=0)
    assert_true(score_label == score)
    assert_true(pvalue_label == pvalue)

    # check that we obtain the same results with a sparse representation
    svm_sparse = SVC(kernel='linear')
    cv_sparse = cval.StratifiedKFold(y, 2)
    score_label, _, pvalue_label = cval.permutation_test_score(
        svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse,
        scoring="accuracy", labels=np.ones(y.size), random_state=0)

    assert_true(score_label == score)
    assert_true(pvalue_label == pvalue)

    # test with custom scoring object
    def custom_score(y_true, y_pred):
        return (((y_true == y_pred).sum() - (y_true != y_pred).sum())
                / y_true.shape[0])

    scorer = make_scorer(custom_score)
    score, _, pvalue = cval.permutation_test_score(
        svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0)
    assert_almost_equal(score, .93, 2)
    assert_almost_equal(pvalue, 0.01, 3)

    # set random y
    y = np.mod(np.arange(len(y)), 3)

    score, scores, pvalue = cval.permutation_test_score(
        svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")

    assert_less(score, 0.5)
    assert_greater(pvalue, 0.2)


def test_cross_val_generator_with_indices():
    X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    y = np.array([1, 1, 2, 2])
    labels = np.array([1, 2, 3, 4])
    # explicitly passing indices value is deprecated
    loo = cval.LeaveOneOut(4)
    lpo = cval.LeavePOut(4, 2)
    kf = cval.KFold(4, 2)
    skf = cval.StratifiedKFold(y, 2)
    lolo = cval.LeaveOneLabelOut(labels)
    lopo = cval.LeavePLabelOut(labels, 2)
    ps = cval.PredefinedSplit([1, 1, 2, 2])
    ss = cval.ShuffleSplit(2)
    for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]:
        for train, test in cv:
            assert_not_equal(np.asarray(train).dtype.kind, 'b')
            assert_not_equal(np.asarray(train).dtype.kind, 'b')
            X[train], X[test]
            y[train], y[test]


@ignore_warnings
def test_cross_val_generator_with_default_indices():
    X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    y = np.array([1, 1, 2, 2])
    labels = np.array([1, 2, 3, 4])
    loo = cval.LeaveOneOut(4)
    lpo = cval.LeavePOut(4, 2)
    kf = cval.KFold(4, 2)
    skf = cval.StratifiedKFold(y, 2)
    lolo = cval.LeaveOneLabelOut(labels)
    lopo = cval.LeavePLabelOut(labels, 2)
    ss = cval.ShuffleSplit(2)
    ps = cval.PredefinedSplit([1, 1, 2, 2])
    for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]:
        for train, test in cv:
            assert_not_equal(np.asarray(train).dtype.kind, 'b')
            assert_not_equal(np.asarray(train).dtype.kind, 'b')
            X[train], X[test]
            y[train], y[test]


def test_shufflesplit_errors():
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0)
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0)
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1,
                  train_size=0.95)
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11)
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10)
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3)
    assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j)
    assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None,
                  train_size=None)


def test_shufflesplit_reproducible():
    # Check that iterating twice on the ShuffleSplit gives the same
    # sequence of train-test when the random_state is given
    ss = cval.ShuffleSplit(10, random_state=21)
    assert_array_equal(list(a for a, b in ss), list(a for a, b in ss))


def test_safe_split_with_precomputed_kernel():
    clf = SVC()
    clfp = SVC(kernel="precomputed")

    iris = load_iris()
    X, y = iris.data, iris.target
    K = np.dot(X, X.T)

    cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0)
    tr, te = list(cv)[0]

    X_tr, y_tr = cval._safe_split(clf, X, y, tr)
    K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr)
    assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T))

    X_te, y_te = cval._safe_split(clf, X, y, te, tr)
    K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr)
    assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T))


def test_cross_val_score_allow_nans():
    # Check that cross_val_score allows input data with NaNs
    X = np.arange(200, dtype=np.float64).reshape(10, -1)
    X[2, :] = np.nan
    y = np.repeat([0, 1], X.shape[0] / 2)
    p = Pipeline([
        ('imputer', Imputer(strategy='mean', missing_values='NaN')),
        ('classifier', MockClassifier()),
    ])
    cval.cross_val_score(p, X, y, cv=5)


def test_train_test_split_allow_nans():
    # Check that train_test_split allows input data with NaNs
    X = np.arange(200, dtype=np.float64).reshape(10, -1)
    X[2, :] = np.nan
    y = np.repeat([0, 1], X.shape[0] / 2)
    cval.train_test_split(X, y, test_size=0.2, random_state=42)


def test_permutation_test_score_allow_nans():
    # Check that permutation_test_score allows input data with NaNs
    X = np.arange(200, dtype=np.float64).reshape(10, -1)
    X[2, :] = np.nan
    y = np.repeat([0, 1], X.shape[0] / 2)
    p = Pipeline([
        ('imputer', Imputer(strategy='mean', missing_values='NaN')),
        ('classifier', MockClassifier()),
    ])
    cval.permutation_test_score(p, X, y, cv=5)


def test_check_cv_return_types():
    X = np.ones((9, 2))
    cv = cval.check_cv(3, X, classifier=False)
    assert_true(isinstance(cv, cval.KFold))

    y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1])
    cv = cval.check_cv(3, X, y_binary, classifier=True)
    assert_true(isinstance(cv, cval.StratifiedKFold))

    y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2])
    cv = cval.check_cv(3, X, y_multiclass, classifier=True)
    assert_true(isinstance(cv, cval.StratifiedKFold))

    X = np.ones((5, 2))
    y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]]
    cv = cval.check_cv(3, X, y_multilabel, classifier=True)
    assert_true(isinstance(cv, cval.KFold))

    y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]])
    cv = cval.check_cv(3, X, y_multioutput, classifier=True)
    assert_true(isinstance(cv, cval.KFold))


def test_cross_val_score_multilabel():
    X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1],
                  [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]])
    y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1],
                  [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]])
    clf = KNeighborsClassifier(n_neighbors=1)
    scoring_micro = make_scorer(precision_score, average='micro')
    scoring_macro = make_scorer(precision_score, average='macro')
    scoring_samples = make_scorer(precision_score, average='samples')
    score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5)
    score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5)
    score_samples = cval.cross_val_score(clf, X, y,
                                         scoring=scoring_samples, cv=5)
    assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3])
    assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
    assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])


def test_cross_val_predict():
    boston = load_boston()
    X, y = boston.data, boston.target
    cv = cval.KFold(len(boston.target))

    est = Ridge()

    # Naive loop (should be same as cross_val_predict):
    preds2 = np.zeros_like(y)
    for train, test in cv:
        est.fit(X[train], y[train])
        preds2[test] = est.predict(X[test])

    preds = cval.cross_val_predict(est, X, y, cv=cv)
    assert_array_almost_equal(preds, preds2)

    preds = cval.cross_val_predict(est, X, y)
    assert_equal(len(preds), len(y))

    cv = cval.LeaveOneOut(len(y))
    preds = cval.cross_val_predict(est, X, y, cv=cv)
    assert_equal(len(preds), len(y))

    Xsp = X.copy()
    Xsp *= (Xsp > np.median(Xsp))
    Xsp = coo_matrix(Xsp)
    preds = cval.cross_val_predict(est, Xsp, y)
    assert_array_almost_equal(len(preds), len(y))

    preds = cval.cross_val_predict(KMeans(), X)
    assert_equal(len(preds), len(y))

    def bad_cv():
        for i in range(4):
            yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8])

    assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv())


def test_cross_val_predict_input_types():
    clf = Ridge()
    # Smoke test
    predictions = cval.cross_val_predict(clf, X, y)
    assert_equal(predictions.shape, (10,))

    # test with multioutput y
    with ignore_warnings(category=ConvergenceWarning):
        predictions = cval.cross_val_predict(clf, X_sparse, X)
    assert_equal(predictions.shape, (10, 2))

    predictions = cval.cross_val_predict(clf, X_sparse, y)
    assert_array_equal(predictions.shape, (10,))

    # test with multioutput y
    with ignore_warnings(category=ConvergenceWarning):
        predictions = cval.cross_val_predict(clf, X_sparse, X)
    assert_array_equal(predictions.shape, (10, 2))

    # test with X and y as list
    list_check = lambda x: isinstance(x, list)
    clf = CheckingClassifier(check_X=list_check)
    predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist())

    clf = CheckingClassifier(check_y=list_check)
    predictions = cval.cross_val_predict(clf, X, y.tolist())

    # test with 3d X and
    X_3d = X[:, :, np.newaxis]
    check_3d = lambda x: x.ndim == 3
    clf = CheckingClassifier(check_X=check_3d)
    predictions = cval.cross_val_predict(clf, X_3d, y)
    assert_array_equal(predictions.shape, (10,))


def test_cross_val_predict_pandas():
    # check cross_val_score doesn't destroy pandas dataframe
    types = [(MockDataFrame, MockDataFrame)]
    try:
        from pandas import Series, DataFrame
        types.append((Series, DataFrame))
    except ImportError:
        pass
    for TargetType, InputFeatureType in types:
        # X dataframe, y series
        X_df, y_ser = InputFeatureType(X), TargetType(y)
        check_df = lambda x: isinstance(x, InputFeatureType)
        check_series = lambda x: isinstance(x, TargetType)
        clf = CheckingClassifier(check_X=check_df, check_y=check_series)
        cval.cross_val_predict(clf, X_df, y_ser)


def test_sparse_fit_params():
    iris = load_iris()
    X, y = iris.data, iris.target
    clf = MockClassifier()
    fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))}
    a = cval.cross_val_score(clf, X, y, fit_params=fit_params)
    assert_array_equal(a, np.ones(3))


def test_check_is_partition():
    p = np.arange(100)
    assert_true(cval._check_is_partition(p, 100))
    assert_false(cval._check_is_partition(np.delete(p, 23), 100))

    p[0] = 23
    assert_false(cval._check_is_partition(p, 100))


def test_cross_val_predict_sparse_prediction():
    # check that cross_val_predict gives same result for sparse and dense input
    X, y = make_multilabel_classification(n_classes=2, n_labels=1,
                                          allow_unlabeled=False,
                                          return_indicator=True,
                                          random_state=1)
    X_sparse = csr_matrix(X)
    y_sparse = csr_matrix(y)
    classif = OneVsRestClassifier(SVC(kernel='linear'))
    preds = cval.cross_val_predict(classif, X, y, cv=10)
    preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10)
    preds_sparse = preds_sparse.toarray()
    assert_array_almost_equal(preds_sparse, preds)