1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
|
# cython: cdivision=True
# cython: boundscheck=False
# cython: wraparound=False
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Lars Buitinck
# Arnaud Joly <arnaud.v.joly@gmail.com>
# Joel Nothman <joel.nothman@gmail.com>
# Fares Hedayati <fares.hedayati@gmail.com>
# Jacob Schreiber <jmschreiber91@gmail.com>
# Nelson Liu <nelson@nelsonliu.me>
#
# License: BSD 3 clause
from cpython cimport Py_INCREF, PyObject
from libc.stdlib cimport free
from libc.stdlib cimport realloc
from libc.string cimport memcpy
from libc.string cimport memset
import numpy as np
cimport numpy as np
np.import_array()
from scipy.sparse import issparse
from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from ._utils cimport Stack
from ._utils cimport StackRecord
from ._utils cimport PriorityHeap
from ._utils cimport PriorityHeapRecord
from ._utils cimport safe_realloc
from ._utils cimport sizet_ptr_to_ndarray
cdef extern from "numpy/arrayobject.h":
object PyArray_NewFromDescr(object subtype, np.dtype descr,
int nd, np.npy_intp* dims,
np.npy_intp* strides,
void* data, int flags, object obj)
# =============================================================================
# Types and constants
# =============================================================================
from numpy import float32 as DTYPE
from numpy import float64 as DOUBLE
cdef double INFINITY = np.inf
# Some handy constants (BestFirstTreeBuilder)
cdef int IS_FIRST = 1
cdef int IS_NOT_FIRST = 0
cdef int IS_LEFT = 1
cdef int IS_NOT_LEFT = 0
TREE_LEAF = -1
TREE_UNDEFINED = -2
cdef SIZE_t _TREE_LEAF = TREE_LEAF
cdef SIZE_t _TREE_UNDEFINED = TREE_UNDEFINED
cdef SIZE_t INITIAL_STACK_SIZE = 10
# Repeat struct definition for numpy
NODE_DTYPE = np.dtype({
'names': ['left_child', 'right_child', 'feature', 'threshold', 'impurity',
'n_node_samples', 'weighted_n_node_samples'],
'formats': [np.intp, np.intp, np.intp, np.float64, np.float64, np.intp,
np.float64],
'offsets': [
<Py_ssize_t> &(<Node*> NULL).left_child,
<Py_ssize_t> &(<Node*> NULL).right_child,
<Py_ssize_t> &(<Node*> NULL).feature,
<Py_ssize_t> &(<Node*> NULL).threshold,
<Py_ssize_t> &(<Node*> NULL).impurity,
<Py_ssize_t> &(<Node*> NULL).n_node_samples,
<Py_ssize_t> &(<Node*> NULL).weighted_n_node_samples
]
})
# =============================================================================
# TreeBuilder
# =============================================================================
cdef class TreeBuilder:
"""Interface for different tree building strategies."""
cpdef build(self, Tree tree, object X, np.ndarray y,
np.ndarray sample_weight=None,
np.ndarray X_idx_sorted=None):
"""Build a decision tree from the training set (X, y)."""
pass
cdef inline _check_input(self, object X, np.ndarray y,
np.ndarray sample_weight):
"""Check input dtype, layout and format"""
if issparse(X):
X = X.tocsc()
X.sort_indices()
if X.data.dtype != DTYPE:
X.data = np.ascontiguousarray(X.data, dtype=DTYPE)
if X.indices.dtype != np.int32 or X.indptr.dtype != np.int32:
raise ValueError("No support for np.int64 index based "
"sparse matrices")
elif X.dtype != DTYPE:
# since we have to copy we will make it fortran for efficiency
X = np.asfortranarray(X, dtype=DTYPE)
if y.dtype != DOUBLE or not y.flags.contiguous:
y = np.ascontiguousarray(y, dtype=DOUBLE)
if (sample_weight is not None and
(sample_weight.dtype != DOUBLE or
not sample_weight.flags.contiguous)):
sample_weight = np.asarray(sample_weight, dtype=DOUBLE,
order="C")
return X, y, sample_weight
# Depth first builder ---------------------------------------------------------
cdef class DepthFirstTreeBuilder(TreeBuilder):
"""Build a decision tree in depth-first fashion."""
def __cinit__(self, Splitter splitter, SIZE_t min_samples_split,
SIZE_t min_samples_leaf, double min_weight_leaf,
SIZE_t max_depth, double min_impurity_split):
self.splitter = splitter
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_leaf = min_weight_leaf
self.max_depth = max_depth
self.min_impurity_split = min_impurity_split
cpdef build(self, Tree tree, object X, np.ndarray y,
np.ndarray sample_weight=None,
np.ndarray X_idx_sorted=None):
"""Build a decision tree from the training set (X, y)."""
# check input
X, y, sample_weight = self._check_input(X, y, sample_weight)
cdef DOUBLE_t* sample_weight_ptr = NULL
if sample_weight is not None:
sample_weight_ptr = <DOUBLE_t*> sample_weight.data
# Initial capacity
cdef int init_capacity
if tree.max_depth <= 10:
init_capacity = (2 ** (tree.max_depth + 1)) - 1
else:
init_capacity = 2047
tree._resize(init_capacity)
# Parameters
cdef Splitter splitter = self.splitter
cdef SIZE_t max_depth = self.max_depth
cdef SIZE_t min_samples_leaf = self.min_samples_leaf
cdef double min_weight_leaf = self.min_weight_leaf
cdef SIZE_t min_samples_split = self.min_samples_split
cdef double min_impurity_split = self.min_impurity_split
# Recursive partition (without actual recursion)
splitter.init(X, y, sample_weight_ptr, X_idx_sorted)
cdef SIZE_t start
cdef SIZE_t end
cdef SIZE_t depth
cdef SIZE_t parent
cdef bint is_left
cdef SIZE_t n_node_samples = splitter.n_samples
cdef double weighted_n_samples = splitter.weighted_n_samples
cdef double weighted_n_node_samples
cdef SplitRecord split
cdef SIZE_t node_id
cdef double threshold
cdef double impurity = INFINITY
cdef SIZE_t n_constant_features
cdef bint is_leaf
cdef bint first = 1
cdef SIZE_t max_depth_seen = -1
cdef int rc = 0
cdef Stack stack = Stack(INITIAL_STACK_SIZE)
cdef StackRecord stack_record
with nogil:
# push root node onto stack
rc = stack.push(0, n_node_samples, 0, _TREE_UNDEFINED, 0, INFINITY, 0)
if rc == -1:
# got return code -1 - out-of-memory
with gil:
raise MemoryError()
while not stack.is_empty():
stack.pop(&stack_record)
start = stack_record.start
end = stack_record.end
depth = stack_record.depth
parent = stack_record.parent
is_left = stack_record.is_left
impurity = stack_record.impurity
n_constant_features = stack_record.n_constant_features
n_node_samples = end - start
splitter.node_reset(start, end, &weighted_n_node_samples)
is_leaf = ((depth >= max_depth) or
(n_node_samples < min_samples_split) or
(n_node_samples < 2 * min_samples_leaf) or
(weighted_n_node_samples < min_weight_leaf))
if first:
impurity = splitter.node_impurity()
first = 0
is_leaf = (is_leaf or
(impurity <= min_impurity_split))
if not is_leaf:
splitter.node_split(impurity, &split, &n_constant_features)
is_leaf = is_leaf or (split.pos >= end)
node_id = tree._add_node(parent, is_left, is_leaf, split.feature,
split.threshold, impurity, n_node_samples,
weighted_n_node_samples)
if node_id == <SIZE_t>(-1):
rc = -1
break
# Store value for all nodes, to facilitate tree/model
# inspection and interpretation
splitter.node_value(tree.value + node_id * tree.value_stride)
if not is_leaf:
# Push right child on stack
rc = stack.push(split.pos, end, depth + 1, node_id, 0,
split.impurity_right, n_constant_features)
if rc == -1:
break
# Push left child on stack
rc = stack.push(start, split.pos, depth + 1, node_id, 1,
split.impurity_left, n_constant_features)
if rc == -1:
break
if depth > max_depth_seen:
max_depth_seen = depth
if rc >= 0:
rc = tree._resize_c(tree.node_count)
if rc >= 0:
tree.max_depth = max_depth_seen
if rc == -1:
raise MemoryError()
# Best first builder ----------------------------------------------------------
cdef inline int _add_to_frontier(PriorityHeapRecord* rec,
PriorityHeap frontier) nogil:
"""Adds record ``rec`` to the priority queue ``frontier``; returns -1
on memory-error. """
return frontier.push(rec.node_id, rec.start, rec.end, rec.pos, rec.depth,
rec.is_leaf, rec.improvement, rec.impurity,
rec.impurity_left, rec.impurity_right)
cdef class BestFirstTreeBuilder(TreeBuilder):
"""Build a decision tree in best-first fashion.
The best node to expand is given by the node at the frontier that has the
highest impurity improvement.
"""
cdef SIZE_t max_leaf_nodes
def __cinit__(self, Splitter splitter, SIZE_t min_samples_split,
SIZE_t min_samples_leaf, min_weight_leaf,
SIZE_t max_depth, SIZE_t max_leaf_nodes,
double min_impurity_split):
self.splitter = splitter
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_leaf = min_weight_leaf
self.max_depth = max_depth
self.max_leaf_nodes = max_leaf_nodes
self.min_impurity_split = min_impurity_split
cpdef build(self, Tree tree, object X, np.ndarray y,
np.ndarray sample_weight=None,
np.ndarray X_idx_sorted=None):
"""Build a decision tree from the training set (X, y)."""
# check input
X, y, sample_weight = self._check_input(X, y, sample_weight)
cdef DOUBLE_t* sample_weight_ptr = NULL
if sample_weight is not None:
sample_weight_ptr = <DOUBLE_t*> sample_weight.data
# Parameters
cdef Splitter splitter = self.splitter
cdef SIZE_t max_leaf_nodes = self.max_leaf_nodes
cdef SIZE_t min_samples_leaf = self.min_samples_leaf
cdef double min_weight_leaf = self.min_weight_leaf
cdef SIZE_t min_samples_split = self.min_samples_split
# Recursive partition (without actual recursion)
splitter.init(X, y, sample_weight_ptr, X_idx_sorted)
cdef PriorityHeap frontier = PriorityHeap(INITIAL_STACK_SIZE)
cdef PriorityHeapRecord record
cdef PriorityHeapRecord split_node_left
cdef PriorityHeapRecord split_node_right
cdef SIZE_t n_node_samples = splitter.n_samples
cdef SIZE_t max_split_nodes = max_leaf_nodes - 1
cdef bint is_leaf
cdef SIZE_t max_depth_seen = -1
cdef int rc = 0
cdef Node* node
# Initial capacity
cdef SIZE_t init_capacity = max_split_nodes + max_leaf_nodes
tree._resize(init_capacity)
with nogil:
# add root to frontier
rc = self._add_split_node(splitter, tree, 0, n_node_samples,
INFINITY, IS_FIRST, IS_LEFT, NULL, 0,
&split_node_left)
if rc >= 0:
rc = _add_to_frontier(&split_node_left, frontier)
if rc == -1:
with gil:
raise MemoryError()
while not frontier.is_empty():
frontier.pop(&record)
node = &tree.nodes[record.node_id]
is_leaf = (record.is_leaf or max_split_nodes <= 0)
if is_leaf:
# Node is not expandable; set node as leaf
node.left_child = _TREE_LEAF
node.right_child = _TREE_LEAF
node.feature = _TREE_UNDEFINED
node.threshold = _TREE_UNDEFINED
else:
# Node is expandable
# Decrement number of split nodes available
max_split_nodes -= 1
# Compute left split node
rc = self._add_split_node(splitter, tree,
record.start, record.pos,
record.impurity_left,
IS_NOT_FIRST, IS_LEFT, node,
record.depth + 1,
&split_node_left)
if rc == -1:
break
# tree.nodes may have changed
node = &tree.nodes[record.node_id]
# Compute right split node
rc = self._add_split_node(splitter, tree, record.pos,
record.end,
record.impurity_right,
IS_NOT_FIRST, IS_NOT_LEFT, node,
record.depth + 1,
&split_node_right)
if rc == -1:
break
# Add nodes to queue
rc = _add_to_frontier(&split_node_left, frontier)
if rc == -1:
break
rc = _add_to_frontier(&split_node_right, frontier)
if rc == -1:
break
if record.depth > max_depth_seen:
max_depth_seen = record.depth
if rc >= 0:
rc = tree._resize_c(tree.node_count)
if rc >= 0:
tree.max_depth = max_depth_seen
if rc == -1:
raise MemoryError()
cdef inline int _add_split_node(self, Splitter splitter, Tree tree,
SIZE_t start, SIZE_t end, double impurity,
bint is_first, bint is_left, Node* parent,
SIZE_t depth,
PriorityHeapRecord* res) nogil:
"""Adds node w/ partition ``[start, end)`` to the frontier. """
cdef SplitRecord split
cdef SIZE_t node_id
cdef SIZE_t n_node_samples
cdef SIZE_t n_constant_features = 0
cdef double weighted_n_samples = splitter.weighted_n_samples
cdef double min_impurity_split = self.min_impurity_split
cdef double weighted_n_node_samples
cdef bint is_leaf
cdef SIZE_t n_left, n_right
cdef double imp_diff
splitter.node_reset(start, end, &weighted_n_node_samples)
if is_first:
impurity = splitter.node_impurity()
n_node_samples = end - start
is_leaf = ((depth > self.max_depth) or
(n_node_samples < self.min_samples_split) or
(n_node_samples < 2 * self.min_samples_leaf) or
(weighted_n_node_samples < self.min_weight_leaf) or
(impurity <= min_impurity_split))
if not is_leaf:
splitter.node_split(impurity, &split, &n_constant_features)
is_leaf = is_leaf or (split.pos >= end)
node_id = tree._add_node(parent - tree.nodes
if parent != NULL
else _TREE_UNDEFINED,
is_left, is_leaf,
split.feature, split.threshold, impurity, n_node_samples,
weighted_n_node_samples)
if node_id == <SIZE_t>(-1):
return -1
# compute values also for split nodes (might become leafs later).
splitter.node_value(tree.value + node_id * tree.value_stride)
res.node_id = node_id
res.start = start
res.end = end
res.depth = depth
res.impurity = impurity
if not is_leaf:
# is split node
res.pos = split.pos
res.is_leaf = 0
res.improvement = split.improvement
res.impurity_left = split.impurity_left
res.impurity_right = split.impurity_right
else:
# is leaf => 0 improvement
res.pos = end
res.is_leaf = 1
res.improvement = 0.0
res.impurity_left = impurity
res.impurity_right = impurity
return 0
# =============================================================================
# Tree
# =============================================================================
cdef class Tree:
"""Array-based representation of a binary decision tree.
The binary tree is represented as a number of parallel arrays. The i-th
element of each array holds information about the node `i`. Node 0 is the
tree's root. You can find a detailed description of all arrays in
`_tree.pxd`. NOTE: Some of the arrays only apply to either leaves or split
nodes, resp. In this case the values of nodes of the other type are
arbitrary!
Attributes
----------
node_count : int
The number of nodes (internal nodes + leaves) in the tree.
capacity : int
The current capacity (i.e., size) of the arrays, which is at least as
great as `node_count`.
max_depth : int
The maximal depth of the tree.
children_left : array of int, shape [node_count]
children_left[i] holds the node id of the left child of node i.
For leaves, children_left[i] == TREE_LEAF. Otherwise,
children_left[i] > i. This child handles the case where
X[:, feature[i]] <= threshold[i].
children_right : array of int, shape [node_count]
children_right[i] holds the node id of the right child of node i.
For leaves, children_right[i] == TREE_LEAF. Otherwise,
children_right[i] > i. This child handles the case where
X[:, feature[i]] > threshold[i].
feature : array of int, shape [node_count]
feature[i] holds the feature to split on, for the internal node i.
threshold : array of double, shape [node_count]
threshold[i] holds the threshold for the internal node i.
value : array of double, shape [node_count, n_outputs, max_n_classes]
Contains the constant prediction value of each node.
impurity : array of double, shape [node_count]
impurity[i] holds the impurity (i.e., the value of the splitting
criterion) at node i.
n_node_samples : array of int, shape [node_count]
n_node_samples[i] holds the number of training samples reaching node i.
weighted_n_node_samples : array of int, shape [node_count]
weighted_n_node_samples[i] holds the weighted number of training samples
reaching node i.
"""
# Wrap for outside world.
# WARNING: these reference the current `nodes` and `value` buffers, which
# must not be freed by a subsequent memory allocation.
# (i.e. through `_resize` or `__setstate__`)
property n_classes:
def __get__(self):
# it's small; copy for memory safety
return sizet_ptr_to_ndarray(self.n_classes, self.n_outputs).copy()
property children_left:
def __get__(self):
return self._get_node_ndarray()['left_child'][:self.node_count]
property children_right:
def __get__(self):
return self._get_node_ndarray()['right_child'][:self.node_count]
property feature:
def __get__(self):
return self._get_node_ndarray()['feature'][:self.node_count]
property threshold:
def __get__(self):
return self._get_node_ndarray()['threshold'][:self.node_count]
property impurity:
def __get__(self):
return self._get_node_ndarray()['impurity'][:self.node_count]
property n_node_samples:
def __get__(self):
return self._get_node_ndarray()['n_node_samples'][:self.node_count]
property weighted_n_node_samples:
def __get__(self):
return self._get_node_ndarray()['weighted_n_node_samples'][:self.node_count]
property value:
def __get__(self):
return self._get_value_ndarray()[:self.node_count]
def __cinit__(self, int n_features, np.ndarray[SIZE_t, ndim=1] n_classes,
int n_outputs):
"""Constructor."""
# Input/Output layout
self.n_features = n_features
self.n_outputs = n_outputs
self.n_classes = NULL
safe_realloc(&self.n_classes, n_outputs)
self.max_n_classes = np.max(n_classes)
self.value_stride = n_outputs * self.max_n_classes
cdef SIZE_t k
for k in range(n_outputs):
self.n_classes[k] = n_classes[k]
# Inner structures
self.max_depth = 0
self.node_count = 0
self.capacity = 0
self.value = NULL
self.nodes = NULL
def __dealloc__(self):
"""Destructor."""
# Free all inner structures
free(self.n_classes)
free(self.value)
free(self.nodes)
def __reduce__(self):
"""Reduce re-implementation, for pickling."""
return (Tree, (self.n_features,
sizet_ptr_to_ndarray(self.n_classes, self.n_outputs),
self.n_outputs), self.__getstate__())
def __getstate__(self):
"""Getstate re-implementation, for pickling."""
d = {}
# capacity is infered during the __setstate__ using nodes
d["max_depth"] = self.max_depth
d["node_count"] = self.node_count
d["nodes"] = self._get_node_ndarray()
d["values"] = self._get_value_ndarray()
return d
def __setstate__(self, d):
"""Setstate re-implementation, for unpickling."""
self.max_depth = d["max_depth"]
self.node_count = d["node_count"]
if 'nodes' not in d:
raise ValueError('You have loaded Tree version which '
'cannot be imported')
node_ndarray = d['nodes']
value_ndarray = d['values']
value_shape = (node_ndarray.shape[0], self.n_outputs,
self.max_n_classes)
if (node_ndarray.ndim != 1 or
node_ndarray.dtype != NODE_DTYPE or
not node_ndarray.flags.c_contiguous or
value_ndarray.shape != value_shape or
not value_ndarray.flags.c_contiguous or
value_ndarray.dtype != np.float64):
raise ValueError('Did not recognise loaded array layout')
self.capacity = node_ndarray.shape[0]
if self._resize_c(self.capacity) != 0:
raise MemoryError("resizing tree to %d" % self.capacity)
nodes = memcpy(self.nodes, (<np.ndarray> node_ndarray).data,
self.capacity * sizeof(Node))
value = memcpy(self.value, (<np.ndarray> value_ndarray).data,
self.capacity * self.value_stride * sizeof(double))
cdef void _resize(self, SIZE_t capacity) except *:
"""Resize all inner arrays to `capacity`, if `capacity` == -1, then
double the size of the inner arrays."""
if self._resize_c(capacity) != 0:
raise MemoryError()
# XXX using (size_t)(-1) is ugly, but SIZE_MAX is not available in C89
# (i.e., older MSVC).
cdef int _resize_c(self, SIZE_t capacity=<SIZE_t>(-1)) nogil:
"""Guts of _resize. Returns 0 for success, -1 for error."""
if capacity == self.capacity and self.nodes != NULL:
return 0
if capacity == <SIZE_t>(-1):
if self.capacity == 0:
capacity = 3 # default initial value
else:
capacity = 2 * self.capacity
# XXX no safe_realloc here because we need to grab the GIL
cdef void* ptr = realloc(self.nodes, capacity * sizeof(Node))
if ptr == NULL:
return -1
self.nodes = <Node*> ptr
ptr = realloc(self.value,
capacity * self.value_stride * sizeof(double))
if ptr == NULL:
return -1
self.value = <double*> ptr
# value memory is initialised to 0 to enable classifier argmax
if capacity > self.capacity:
memset(<void*>(self.value + self.capacity * self.value_stride), 0,
(capacity - self.capacity) * self.value_stride *
sizeof(double))
# if capacity smaller than node_count, adjust the counter
if capacity < self.node_count:
self.node_count = capacity
self.capacity = capacity
return 0
cdef SIZE_t _add_node(self, SIZE_t parent, bint is_left, bint is_leaf,
SIZE_t feature, double threshold, double impurity,
SIZE_t n_node_samples, double weighted_n_node_samples) nogil:
"""Add a node to the tree.
The new node registers itself as the child of its parent.
Returns (size_t)(-1) on error.
"""
cdef SIZE_t node_id = self.node_count
if node_id >= self.capacity:
if self._resize_c() != 0:
return <SIZE_t>(-1)
cdef Node* node = &self.nodes[node_id]
node.impurity = impurity
node.n_node_samples = n_node_samples
node.weighted_n_node_samples = weighted_n_node_samples
if parent != _TREE_UNDEFINED:
if is_left:
self.nodes[parent].left_child = node_id
else:
self.nodes[parent].right_child = node_id
if is_leaf:
node.left_child = _TREE_LEAF
node.right_child = _TREE_LEAF
node.feature = _TREE_UNDEFINED
node.threshold = _TREE_UNDEFINED
else:
# left_child and right_child will be set later
node.feature = feature
node.threshold = threshold
self.node_count += 1
return node_id
cpdef np.ndarray predict(self, object X):
"""Predict target for X."""
out = self._get_value_ndarray().take(self.apply(X), axis=0,
mode='clip')
if self.n_outputs == 1:
out = out.reshape(X.shape[0], self.max_n_classes)
return out
cpdef np.ndarray apply(self, object X):
"""Finds the terminal region (=leaf node) for each sample in X."""
if issparse(X):
return self._apply_sparse_csr(X)
else:
return self._apply_dense(X)
cdef inline np.ndarray _apply_dense(self, object X):
"""Finds the terminal region (=leaf node) for each sample in X."""
# Check input
if not isinstance(X, np.ndarray):
raise ValueError("X should be in np.ndarray format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef np.ndarray X_ndarray = X
cdef DTYPE_t* X_ptr = <DTYPE_t*> X_ndarray.data
cdef SIZE_t X_sample_stride = <SIZE_t> X.strides[0] / <SIZE_t> X.itemsize
cdef SIZE_t X_fx_stride = <SIZE_t> X.strides[1] / <SIZE_t> X.itemsize
cdef SIZE_t n_samples = X.shape[0]
# Initialize output
cdef np.ndarray[SIZE_t] out = np.zeros((n_samples,), dtype=np.intp)
cdef SIZE_t* out_ptr = <SIZE_t*> out.data
# Initialize auxiliary data-structure
cdef Node* node = NULL
cdef SIZE_t i = 0
with nogil:
for i in range(n_samples):
node = self.nodes
# While node not a leaf
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
if X_ptr[X_sample_stride * i +
X_fx_stride * node.feature] <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
out_ptr[i] = <SIZE_t>(node - self.nodes) # node offset
return out
cdef inline np.ndarray _apply_sparse_csr(self, object X):
"""Finds the terminal region (=leaf node) for each sample in sparse X.
"""
# Check input
if not isinstance(X, csr_matrix):
raise ValueError("X should be in csr_matrix format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef np.ndarray[ndim=1, dtype=DTYPE_t] X_data_ndarray = X.data
cdef np.ndarray[ndim=1, dtype=INT32_t] X_indices_ndarray = X.indices
cdef np.ndarray[ndim=1, dtype=INT32_t] X_indptr_ndarray = X.indptr
cdef DTYPE_t* X_data = <DTYPE_t*>X_data_ndarray.data
cdef INT32_t* X_indices = <INT32_t*>X_indices_ndarray.data
cdef INT32_t* X_indptr = <INT32_t*>X_indptr_ndarray.data
cdef SIZE_t n_samples = X.shape[0]
cdef SIZE_t n_features = X.shape[1]
# Initialize output
cdef np.ndarray[SIZE_t, ndim=1] out = np.zeros((n_samples,),
dtype=np.intp)
cdef SIZE_t* out_ptr = <SIZE_t*> out.data
# Initialize auxiliary data-structure
cdef DTYPE_t feature_value = 0.
cdef Node* node = NULL
cdef DTYPE_t* X_sample = NULL
cdef SIZE_t i = 0
cdef INT32_t k = 0
# feature_to_sample as a data structure records the last seen sample
# for each feature; functionally, it is an efficient way to identify
# which features are nonzero in the present sample.
cdef SIZE_t* feature_to_sample = NULL
safe_realloc(&X_sample, n_features * sizeof(DTYPE_t))
safe_realloc(&feature_to_sample, n_features * sizeof(SIZE_t))
with nogil:
memset(feature_to_sample, -1, n_features * sizeof(SIZE_t))
for i in range(n_samples):
node = self.nodes
for k in range(X_indptr[i], X_indptr[i + 1]):
feature_to_sample[X_indices[k]] = i
X_sample[X_indices[k]] = X_data[k]
# While node not a leaf
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
if feature_to_sample[node.feature] == i:
feature_value = X_sample[node.feature]
else:
feature_value = 0.
if feature_value <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
out_ptr[i] = <SIZE_t>(node - self.nodes) # node offset
# Free auxiliary arrays
free(X_sample)
free(feature_to_sample)
return out
cpdef object decision_path(self, object X):
"""Finds the decision path (=node) for each sample in X."""
if issparse(X):
return self._decision_path_sparse_csr(X)
else:
return self._decision_path_dense(X)
cdef inline object _decision_path_dense(self, object X):
"""Finds the decision path (=node) for each sample in X."""
# Check input
if not isinstance(X, np.ndarray):
raise ValueError("X should be in np.ndarray format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef np.ndarray X_ndarray = X
cdef DTYPE_t* X_ptr = <DTYPE_t*> X_ndarray.data
cdef SIZE_t X_sample_stride = <SIZE_t> X.strides[0] / <SIZE_t> X.itemsize
cdef SIZE_t X_fx_stride = <SIZE_t> X.strides[1] / <SIZE_t> X.itemsize
cdef SIZE_t n_samples = X.shape[0]
# Initialize output
cdef np.ndarray[SIZE_t] indptr = np.zeros(n_samples + 1, dtype=np.intp)
cdef SIZE_t* indptr_ptr = <SIZE_t*> indptr.data
cdef np.ndarray[SIZE_t] indices = np.zeros(n_samples *
(1 + self.max_depth),
dtype=np.intp)
cdef SIZE_t* indices_ptr = <SIZE_t*> indices.data
# Initialize auxiliary data-structure
cdef Node* node = NULL
cdef SIZE_t i = 0
with nogil:
for i in range(n_samples):
node = self.nodes
indptr_ptr[i + 1] = indptr_ptr[i]
# Add all external nodes
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
if X_ptr[X_sample_stride * i +
X_fx_stride * node.feature] <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
# Add the leave node
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
indices = indices[:indptr[n_samples]]
cdef np.ndarray[SIZE_t] data = np.ones(shape=len(indices),
dtype=np.intp)
out = csr_matrix((data, indices, indptr),
shape=(n_samples, self.node_count))
return out
cdef inline object _decision_path_sparse_csr(self, object X):
"""Finds the decision path (=node) for each sample in X."""
# Check input
if not isinstance(X, csr_matrix):
raise ValueError("X should be in csr_matrix format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef np.ndarray[ndim=1, dtype=DTYPE_t] X_data_ndarray = X.data
cdef np.ndarray[ndim=1, dtype=INT32_t] X_indices_ndarray = X.indices
cdef np.ndarray[ndim=1, dtype=INT32_t] X_indptr_ndarray = X.indptr
cdef DTYPE_t* X_data = <DTYPE_t*>X_data_ndarray.data
cdef INT32_t* X_indices = <INT32_t*>X_indices_ndarray.data
cdef INT32_t* X_indptr = <INT32_t*>X_indptr_ndarray.data
cdef SIZE_t n_samples = X.shape[0]
cdef SIZE_t n_features = X.shape[1]
# Initialize output
cdef np.ndarray[SIZE_t] indptr = np.zeros(n_samples + 1, dtype=np.intp)
cdef SIZE_t* indptr_ptr = <SIZE_t*> indptr.data
cdef np.ndarray[SIZE_t] indices = np.zeros(n_samples *
(1 + self.max_depth),
dtype=np.intp)
cdef SIZE_t* indices_ptr = <SIZE_t*> indices.data
# Initialize auxiliary data-structure
cdef DTYPE_t feature_value = 0.
cdef Node* node = NULL
cdef DTYPE_t* X_sample = NULL
cdef SIZE_t i = 0
cdef INT32_t k = 0
# feature_to_sample as a data structure records the last seen sample
# for each feature; functionally, it is an efficient way to identify
# which features are nonzero in the present sample.
cdef SIZE_t* feature_to_sample = NULL
safe_realloc(&X_sample, n_features * sizeof(DTYPE_t))
safe_realloc(&feature_to_sample, n_features * sizeof(SIZE_t))
with nogil:
memset(feature_to_sample, -1, n_features * sizeof(SIZE_t))
for i in range(n_samples):
node = self.nodes
indptr_ptr[i + 1] = indptr_ptr[i]
for k in range(X_indptr[i], X_indptr[i + 1]):
feature_to_sample[X_indices[k]] = i
X_sample[X_indices[k]] = X_data[k]
# While node not a leaf
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
if feature_to_sample[node.feature] == i:
feature_value = X_sample[node.feature]
else:
feature_value = 0.
if feature_value <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
# Add the leave node
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
# Free auxiliary arrays
free(X_sample)
free(feature_to_sample)
indices = indices[:indptr[n_samples]]
cdef np.ndarray[SIZE_t] data = np.ones(shape=len(indices),
dtype=np.intp)
out = csr_matrix((data, indices, indptr),
shape=(n_samples, self.node_count))
return out
cpdef compute_feature_importances(self, normalize=True):
"""Computes the importance of each feature (aka variable)."""
cdef Node* left
cdef Node* right
cdef Node* nodes = self.nodes
cdef Node* node = nodes
cdef Node* end_node = node + self.node_count
cdef double normalizer = 0.
cdef np.ndarray[np.float64_t, ndim=1] importances
importances = np.zeros((self.n_features,))
cdef DOUBLE_t* importance_data = <DOUBLE_t*>importances.data
with nogil:
while node != end_node:
if node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
left = &nodes[node.left_child]
right = &nodes[node.right_child]
importance_data[node.feature] += (
node.weighted_n_node_samples * node.impurity -
left.weighted_n_node_samples * left.impurity -
right.weighted_n_node_samples * right.impurity)
node += 1
importances /= nodes[0].weighted_n_node_samples
if normalize:
normalizer = np.sum(importances)
if normalizer > 0.0:
# Avoid dividing by zero (e.g., when root is pure)
importances /= normalizer
return importances
cdef np.ndarray _get_value_ndarray(self):
"""Wraps value as a 3-d NumPy array.
The array keeps a reference to this Tree, which manages the underlying
memory.
"""
cdef np.npy_intp shape[3]
shape[0] = <np.npy_intp> self.node_count
shape[1] = <np.npy_intp> self.n_outputs
shape[2] = <np.npy_intp> self.max_n_classes
cdef np.ndarray arr
arr = np.PyArray_SimpleNewFromData(3, shape, np.NPY_DOUBLE, self.value)
Py_INCREF(self)
arr.base = <PyObject*> self
return arr
cdef np.ndarray _get_node_ndarray(self):
"""Wraps nodes as a NumPy struct array.
The array keeps a reference to this Tree, which manages the underlying
memory. Individual fields are publicly accessible as properties of the
Tree.
"""
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> self.node_count
cdef np.npy_intp strides[1]
strides[0] = sizeof(Node)
cdef np.ndarray arr
Py_INCREF(NODE_DTYPE)
arr = PyArray_NewFromDescr(np.ndarray, <np.dtype> NODE_DTYPE, 1, shape,
strides, <void*> self.nodes,
np.NPY_DEFAULT, None)
Py_INCREF(self)
arr.base = <PyObject*> self
return arr
|