File: __init__.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (445 lines) | stat: -rw-r--r-- 13,522 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
The :mod:`sklearn.utils` module includes various utilities.
"""
from collections import Sequence

import numpy as np
from scipy.sparse import issparse
import warnings

from .murmurhash import murmurhash3_32
from .validation import (as_float_array,
                         assert_all_finite,
                         check_random_state, column_or_1d, check_array,
                         check_consistent_length, check_X_y, indexable,
                         check_symmetric)
from .deprecation import deprecated
from .class_weight import compute_class_weight, compute_sample_weight
from ..externals.joblib import cpu_count
from ..exceptions import ConvergenceWarning as _ConvergenceWarning
from ..exceptions import DataConversionWarning


@deprecated("ConvergenceWarning has been moved into the sklearn.exceptions "
            "module. It will not be available here from version 0.19")
class ConvergenceWarning(_ConvergenceWarning):
    pass


__all__ = ["murmurhash3_32", "as_float_array",
           "assert_all_finite", "check_array",
           "check_random_state",
           "compute_class_weight", "compute_sample_weight",
           "column_or_1d", "safe_indexing",
           "check_consistent_length", "check_X_y", 'indexable',
           "check_symmetric", "indices_to_mask"]


def safe_mask(X, mask):
    """Return a mask which is safe to use on X.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        Data on which to apply mask.

    mask: array
        Mask to be used on X.

    Returns
    -------
        mask
    """
    mask = np.asarray(mask)
    if np.issubdtype(mask.dtype, np.int):
        return mask

    if hasattr(X, "toarray"):
        ind = np.arange(mask.shape[0])
        mask = ind[mask]
    return mask


def axis0_safe_slice(X, mask, len_mask):
    """
    This mask is safer than safe_mask since it returns an
    empty array, when a sparse matrix is sliced with a boolean mask
    with all False, instead of raising an unhelpful error in older
    versions of SciPy.

    See: https://github.com/scipy/scipy/issues/5361

    Also note that we can avoid doing the dot product by checking if
    the len_mask is not zero in _huber_loss_and_gradient but this
    is not going to be the bottleneck, since the number of outliers
    and non_outliers are typically non-zero and it makes the code
    tougher to follow.
    """
    if len_mask != 0:
        return X[safe_mask(X, mask), :]
    return np.zeros(shape=(0, X.shape[1]))


def safe_indexing(X, indices):
    """Return items or rows from X using indices.

    Allows simple indexing of lists or arrays.

    Parameters
    ----------
    X : array-like, sparse-matrix, list.
        Data from which to sample rows or items.

    indices : array-like, list
        Indices according to which X will be subsampled.
    """
    if hasattr(X, "iloc"):
        # Pandas Dataframes and Series
        try:
            return X.iloc[indices]
        except ValueError:
            # Cython typed memoryviews internally used in pandas do not support
            # readonly buffers.
            warnings.warn("Copying input dataframe for slicing.",
                          DataConversionWarning)
            return X.copy().iloc[indices]
    elif hasattr(X, "shape"):
        if hasattr(X, 'take') and (hasattr(indices, 'dtype') and
                                   indices.dtype.kind == 'i'):
            # This is often substantially faster than X[indices]
            return X.take(indices, axis=0)
        else:
            return X[indices]
    else:
        return [X[idx] for idx in indices]


def resample(*arrays, **options):
    """Resample arrays or sparse matrices in a consistent way

    The default strategy implements one step of the bootstrapping
    procedure.

    Parameters
    ----------
    *arrays : sequence of indexable data-structures
        Indexable data-structures can be arrays, lists, dataframes or scipy
        sparse matrices with consistent first dimension.

    replace : boolean, True by default
        Implements resampling with replacement. If False, this will implement
        (sliced) random permutations.

    n_samples : int, None by default
        Number of samples to generate. If left to None this is
        automatically set to the first dimension of the arrays.
        If replace is False it should not be larger than the length of
        arrays.

    random_state : int or RandomState instance
        Control the shuffling for reproducible behavior.

    Returns
    -------
    resampled_arrays : sequence of indexable data-structures
        Sequence of resampled views of the collections. The original arrays are
        not impacted.

    Examples
    --------
    It is possible to mix sparse and dense arrays in the same run::

      >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
      >>> y = np.array([0, 1, 2])

      >>> from scipy.sparse import coo_matrix
      >>> X_sparse = coo_matrix(X)

      >>> from sklearn.utils import resample
      >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
      >>> X
      array([[ 1.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> X_sparse                   # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
      <3x2 sparse matrix of type '<... 'numpy.float64'>'
          with 4 stored elements in Compressed Sparse Row format>

      >>> X_sparse.toarray()
      array([[ 1.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> y
      array([0, 1, 0])

      >>> resample(y, n_samples=2, random_state=0)
      array([0, 1])


    See also
    --------
    :func:`sklearn.utils.shuffle`
    """
    random_state = check_random_state(options.pop('random_state', None))
    replace = options.pop('replace', True)
    max_n_samples = options.pop('n_samples', None)
    if options:
        raise ValueError("Unexpected kw arguments: %r" % options.keys())

    if len(arrays) == 0:
        return None

    first = arrays[0]
    n_samples = first.shape[0] if hasattr(first, 'shape') else len(first)

    if max_n_samples is None:
        max_n_samples = n_samples
    elif (max_n_samples > n_samples) and (not replace):
        raise ValueError("Cannot sample %d out of arrays with dim %d"
                         "when replace is False" % (max_n_samples,
                                                    n_samples))

    check_consistent_length(*arrays)

    if replace:
        indices = random_state.randint(0, n_samples, size=(max_n_samples,))
    else:
        indices = np.arange(n_samples)
        random_state.shuffle(indices)
        indices = indices[:max_n_samples]

    # convert sparse matrices to CSR for row-based indexing
    arrays = [a.tocsr() if issparse(a) else a for a in arrays]
    resampled_arrays = [safe_indexing(a, indices) for a in arrays]
    if len(resampled_arrays) == 1:
        # syntactic sugar for the unit argument case
        return resampled_arrays[0]
    else:
        return resampled_arrays


def shuffle(*arrays, **options):
    """Shuffle arrays or sparse matrices in a consistent way

    This is a convenience alias to ``resample(*arrays, replace=False)`` to do
    random permutations of the collections.

    Parameters
    ----------
    *arrays : sequence of indexable data-structures
        Indexable data-structures can be arrays, lists, dataframes or scipy
        sparse matrices with consistent first dimension.

    random_state : int or RandomState instance
        Control the shuffling for reproducible behavior.

    n_samples : int, None by default
        Number of samples to generate. If left to None this is
        automatically set to the first dimension of the arrays.

    Returns
    -------
    shuffled_arrays : sequence of indexable data-structures
        Sequence of shuffled views of the collections. The original arrays are
        not impacted.

    Examples
    --------
    It is possible to mix sparse and dense arrays in the same run::

      >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
      >>> y = np.array([0, 1, 2])

      >>> from scipy.sparse import coo_matrix
      >>> X_sparse = coo_matrix(X)

      >>> from sklearn.utils import shuffle
      >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
      >>> X
      array([[ 0.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> X_sparse                   # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
      <3x2 sparse matrix of type '<... 'numpy.float64'>'
          with 3 stored elements in Compressed Sparse Row format>

      >>> X_sparse.toarray()
      array([[ 0.,  0.],
             [ 2.,  1.],
             [ 1.,  0.]])

      >>> y
      array([2, 1, 0])

      >>> shuffle(y, n_samples=2, random_state=0)
      array([0, 1])

    See also
    --------
    :func:`sklearn.utils.resample`
    """
    options['replace'] = False
    return resample(*arrays, **options)


def safe_sqr(X, copy=True):
    """Element wise squaring of array-likes and sparse matrices.

    Parameters
    ----------
    X : array like, matrix, sparse matrix

    copy : boolean, optional, default True
        Whether to create a copy of X and operate on it or to perform
        inplace computation (default behaviour).

    Returns
    -------
    X ** 2 : element wise square
    """
    X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False)
    if issparse(X):
        if copy:
            X = X.copy()
        X.data **= 2
    else:
        if copy:
            X = X ** 2
        else:
            X **= 2
    return X


def gen_batches(n, batch_size):
    """Generator to create slices containing batch_size elements, from 0 to n.

    The last slice may contain less than batch_size elements, when batch_size
    does not divide n.

    Examples
    --------
    >>> from sklearn.utils import gen_batches
    >>> list(gen_batches(7, 3))
    [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
    >>> list(gen_batches(6, 3))
    [slice(0, 3, None), slice(3, 6, None)]
    >>> list(gen_batches(2, 3))
    [slice(0, 2, None)]
    """
    start = 0
    for _ in range(int(n // batch_size)):
        end = start + batch_size
        yield slice(start, end)
        start = end
    if start < n:
        yield slice(start, n)


def gen_even_slices(n, n_packs, n_samples=None):
    """Generator to create n_packs slices going up to n.

    Pass n_samples when the slices are to be used for sparse matrix indexing;
    slicing off-the-end raises an exception, while it works for NumPy arrays.

    Examples
    --------
    >>> from sklearn.utils import gen_even_slices
    >>> list(gen_even_slices(10, 1))
    [slice(0, 10, None)]
    >>> list(gen_even_slices(10, 10))                     #doctest: +ELLIPSIS
    [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)]
    >>> list(gen_even_slices(10, 5))                      #doctest: +ELLIPSIS
    [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)]
    >>> list(gen_even_slices(10, 3))
    [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]
    """
    start = 0
    if n_packs < 1:
        raise ValueError("gen_even_slices got n_packs=%s, must be >=1"
                         % n_packs)
    for pack_num in range(n_packs):
        this_n = n // n_packs
        if pack_num < n % n_packs:
            this_n += 1
        if this_n > 0:
            end = start + this_n
            if n_samples is not None:
                end = min(n_samples, end)
            yield slice(start, end, None)
            start = end


def _get_n_jobs(n_jobs):
    """Get number of jobs for the computation.

    This function reimplements the logic of joblib to determine the actual
    number of jobs depending on the cpu count. If -1 all CPUs are used.
    If 1 is given, no parallel computing code is used at all, which is useful
    for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
    Thus for n_jobs = -2, all CPUs but one are used.

    Parameters
    ----------
    n_jobs : int
        Number of jobs stated in joblib convention.

    Returns
    -------
    n_jobs : int
        The actual number of jobs as positive integer.

    Examples
    --------
    >>> from sklearn.utils import _get_n_jobs
    >>> _get_n_jobs(4)
    4
    >>> jobs = _get_n_jobs(-2)
    >>> assert jobs == max(cpu_count() - 1, 1)
    >>> _get_n_jobs(0)
    Traceback (most recent call last):
    ...
    ValueError: Parameter n_jobs == 0 has no meaning.
    """
    if n_jobs < 0:
        return max(cpu_count() + 1 + n_jobs, 1)
    elif n_jobs == 0:
        raise ValueError('Parameter n_jobs == 0 has no meaning.')
    else:
        return n_jobs


def tosequence(x):
    """Cast iterable x to a Sequence, avoiding a copy if possible."""
    if isinstance(x, np.ndarray):
        return np.asarray(x)
    elif isinstance(x, Sequence):
        return x
    else:
        return list(x)


def indices_to_mask(indices, mask_length):
    """Convert list of indices to boolean mask.

    Parameters
    ----------
    indices : list-like
        List of integers treated as indices.
    mask_length : int
        Length of boolean mask to be generated.

    Returns
    -------
    mask : 1d boolean nd-array
        Boolean array that is True where indices are present, else False.
    """
    if mask_length <= np.max(indices):
        raise ValueError("mask_length must be greater than max(indices)")

    mask = np.zeros(mask_length, dtype=np.bool)
    mask[indices] = True

    return mask