File: sparsefuncs_fast.pyx

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (423 lines) | stat: -rw-r--r-- 12,978 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# Authors: Mathieu Blondel
#          Olivier Grisel
#          Peter Prettenhofer
#          Lars Buitinck
#          Giorgio Patrini
#
# License: BSD 3 clause

#!python
#cython: boundscheck=False, wraparound=False, cdivision=True

from libc.math cimport fabs, sqrt, pow
cimport numpy as np
import numpy as np
import scipy.sparse as sp
cimport cython
from cython cimport floating

np.import_array()


ctypedef np.float64_t DOUBLE

def csr_row_norms(X):
    """L2 norm of each row in CSR matrix X."""
    if X.dtype != np.float32:
        X = X.astype(np.float64)
    return _csr_row_norms(X.data, X.shape, X.indices, X.indptr)


def _csr_row_norms(np.ndarray[floating, ndim=1, mode="c"] X_data,
                   shape,
                   np.ndarray[int, ndim=1, mode="c"] X_indices,
                   np.ndarray[int, ndim=1, mode="c"] X_indptr):
    cdef:
        unsigned int n_samples = shape[0]
        unsigned int n_features = shape[1]
        np.ndarray[DOUBLE, ndim=1, mode="c"] norms

        np.npy_intp i, j
        double sum_

    norms = np.zeros(n_samples, dtype=np.float64)

    for i in range(n_samples):
        sum_ = 0.0
        for j in range(X_indptr[i], X_indptr[i + 1]):
            sum_ += X_data[j] * X_data[j]
        norms[i] = sum_

    return norms


def csr_mean_variance_axis0(X):
    """Compute mean and variance along axis 0 on a CSR matrix

    Parameters
    ----------
    X: CSR sparse matrix, shape (n_samples, n_features)
        Input data.

    Returns
    -------

    means: float array with shape (n_features,)
        Feature-wise means

    variances: float array with shape (n_features,)
        Feature-wise variances

    """
    if X.dtype != np.float32:
        X = X.astype(np.float64)
    return _csr_mean_variance_axis0(X.data, X.shape, X.indices)


def _csr_mean_variance_axis0(np.ndarray[floating, ndim=1, mode="c"] X_data,
                             shape,
                             np.ndarray[int, ndim=1] X_indices):
    # Implement the function here since variables using fused types
    # cannot be declared directly and can only be passed as function arguments
    cdef unsigned int n_samples = shape[0]
    cdef unsigned int n_features = shape[1]

    cdef unsigned int i
    cdef unsigned int non_zero = X_indices.shape[0]
    cdef unsigned int col_ind
    cdef floating diff

    # means[j] contains the mean of feature j
    cdef np.ndarray[floating, ndim=1] means
    # variances[j] contains the variance of feature j
    cdef np.ndarray[floating, ndim=1] variances

    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    means = np.zeros(n_features, dtype=dtype)
    variances = np.zeros_like(means, dtype=dtype)

    # counts[j] contains the number of samples where feature j is non-zero
    cdef np.ndarray[int, ndim=1] counts = np.zeros(n_features,
                                                   dtype=np.int32)

    for i in xrange(non_zero):
        col_ind = X_indices[i]
        means[col_ind] += X_data[i]

    means /= n_samples

    for i in xrange(non_zero):
        col_ind = X_indices[i]
        diff = X_data[i] - means[col_ind]
        variances[col_ind] += diff * diff
        counts[col_ind] += 1

    for i in xrange(n_features):
        variances[i] += (n_samples - counts[i]) * means[i] ** 2
        variances[i] /= n_samples

    return means, variances


def csc_mean_variance_axis0(X):
    """Compute mean and variance along axis 0 on a CSC matrix

    Parameters
    ----------
    X: CSC sparse matrix, shape (n_samples, n_features)
        Input data.

    Returns
    -------

    means: float array with shape (n_features,)
        Feature-wise means

    variances: float array with shape (n_features,)
        Feature-wise variances

    """
    if X.dtype != np.float32:
        X = X.astype(np.float64)
    return _csc_mean_variance_axis0(X.data, X.shape, X.indices, X.indptr)


def _csc_mean_variance_axis0(np.ndarray[floating, ndim=1] X_data,
                             shape,
                             np.ndarray[int, ndim=1] X_indices,
                             np.ndarray[int, ndim=1] X_indptr):
    # Implement the function here since variables using fused types
    # cannot be declared directly and can only be passed as function arguments
    cdef unsigned int n_samples = shape[0]
    cdef unsigned int n_features = shape[1]

    cdef unsigned int i
    cdef unsigned int j
    cdef unsigned int counts
    cdef unsigned int startptr
    cdef unsigned int endptr
    cdef floating diff

    # means[j] contains the mean of feature j
    cdef np.ndarray[floating, ndim=1] means
    # variances[j] contains the variance of feature j
    cdef np.ndarray[floating, ndim=1] variances
    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    means = np.zeros(n_features, dtype=dtype)
    variances = np.zeros_like(means, dtype=dtype)

    for i in xrange(n_features):

        startptr = X_indptr[i]
        endptr = X_indptr[i + 1]
        counts = endptr - startptr

        for j in xrange(startptr, endptr):
            means[i] += X_data[j]
        means[i] /= n_samples

        for j in xrange(startptr, endptr):
            diff = X_data[j] - means[i]
            variances[i] += diff * diff

        variances[i] += (n_samples - counts) * means[i] * means[i]
        variances[i] /= n_samples

    return means, variances


def incr_mean_variance_axis0(X, last_mean, last_var, unsigned long last_n):
    """Compute mean and variance along axis 0 on a CSR or CSC matrix.

    last_mean, last_var are the statistics computed at the last step by this
    function. Both must be initilized to 0.0. last_n is the
    number of samples encountered until now and is initialized at 0.

    Parameters
    ----------
    X: CSR or CSC sparse matrix, shape (n_samples, n_features)
      Input data.

    last_mean: float array with shape (n_features,)
      Array of feature-wise means to update with the new data X.

    last_var: float array with shape (n_features,)
      Array of feature-wise var to update with the new data X.

    last_n: int
      Number of samples seen so far, before X.

    Returns
    -------

    updated_mean: float array with shape (n_features,)
      Feature-wise means

    updated_variance: float array with shape (n_features,)
      Feature-wise variances

    updated_n : int
      Updated number of samples seen

    References
    ----------

    T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample
      variance: recommendations, The American Statistician, Vol. 37, No. 3,
      pp. 242-247

    Also, see the non-sparse implementation of this in
    `utils.extmath._batch_mean_variance_update`.

    """
    if X.dtype != np.float32:
        X = X.astype(np.float64)
    return _incr_mean_variance_axis0(X.data, X.shape, X.indices, X.indptr,
                                     X.format, last_mean, last_var, last_n)


def _incr_mean_variance_axis0(np.ndarray[floating, ndim=1] X_data,
                              shape,
                              np.ndarray[int, ndim=1] X_indices,
                              np.ndarray[int, ndim=1] X_indptr,
                              X_format,
                              last_mean,
                              last_var,
                              unsigned long last_n):
    # Implement the function here since variables using fused types
    # cannot be declared directly and can only be passed as function arguments
    cdef unsigned long n_samples = shape[0]
    cdef unsigned int n_features = shape[1]
    cdef unsigned int i

    # last = stats until now
    # new = the current increment
    # updated = the aggregated stats
    # when arrays, they are indexed by i per-feature
    cdef np.ndarray[floating, ndim=1] new_mean
    cdef np.ndarray[floating, ndim=1] new_var
    cdef np.ndarray[floating, ndim=1] updated_mean
    cdef np.ndarray[floating, ndim=1] updated_var
    if floating is float:
        dtype = np.float32
    else:
        dtype = np.float64

    new_mean = np.zeros(n_features, dtype=dtype)
    new_var = np.zeros_like(new_mean, dtype=dtype)
    updated_mean = np.zeros_like(new_mean, dtype=dtype)
    updated_var = np.zeros_like(new_mean, dtype=dtype)

    cdef unsigned long new_n
    cdef unsigned long updated_n
    cdef floating last_over_new_n

    # Obtain new stats first
    new_n = n_samples

    if X_format == 'csr':
        # X is a CSR matrix
        new_mean, new_var = _csr_mean_variance_axis0(X_data, shape, X_indices)
    else:
        # X is a CSC matrix
        new_mean, new_var = _csc_mean_variance_axis0(X_data, shape, X_indices,
                                                     X_indptr)

    # First pass
    if last_n == 0:
        return new_mean, new_var, new_n
    # Next passes
    else:
        updated_n = last_n + new_n
        last_over_new_n = last_n / new_n

    for i in xrange(n_features):
        # Unnormalized old stats
        last_mean[i] *= last_n
        last_var[i] *= last_n

        # Unnormalized new stats
        new_mean[i] *= new_n
        new_var[i] *= new_n

        # Update stats
        updated_var[i] = (last_var[i] + new_var[i] +
                          last_over_new_n / updated_n *
                          (last_mean[i] / last_over_new_n - new_mean[i]) ** 2)

        updated_mean[i] = (last_mean[i] + new_mean[i]) / updated_n
        updated_var[i] = updated_var[i] / updated_n

    return updated_mean, updated_var, updated_n


def inplace_csr_row_normalize_l1(X):
    """Inplace row normalize using the l1 norm"""
    _inplace_csr_row_normalize_l1(X.data, X.shape, X.indices, X.indptr)


def _inplace_csr_row_normalize_l1(np.ndarray[floating, ndim=1] X_data,
                                  shape,
                                  np.ndarray[int, ndim=1] X_indices,
                                  np.ndarray[int, ndim=1] X_indptr):
    cdef unsigned int n_samples = shape[0]
    cdef unsigned int n_features = shape[1]

    # the column indices for row i are stored in:
    #    indices[indptr[i]:indices[i+1]]
    # and their corresponding values are stored in:
    #    data[indptr[i]:indptr[i+1]]
    cdef unsigned int i
    cdef unsigned int j
    cdef double sum_

    for i in xrange(n_samples):
        sum_ = 0.0

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            sum_ += fabs(X_data[j])

        if sum_ == 0.0:
            # do not normalize empty rows (can happen if CSR is not pruned
            # correctly)
            continue

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            X_data[j] /= sum_


def inplace_csr_row_normalize_l2(X):
    """Inplace row normalize using the l2 norm"""
    _inplace_csr_row_normalize_l2(X.data, X.shape, X.indices, X.indptr)


def _inplace_csr_row_normalize_l2(np.ndarray[floating, ndim=1] X_data,
                                  shape,
                                  np.ndarray[int, ndim=1] X_indices,
                                  np.ndarray[int, ndim=1] X_indptr):
    cdef unsigned int n_samples = shape[0]
    cdef unsigned int n_features = shape[1]

    cdef unsigned int i
    cdef unsigned int j
    cdef double sum_

    for i in xrange(n_samples):
        sum_ = 0.0

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            sum_ += (X_data[j] * X_data[j])

        if sum_ == 0.0:
            # do not normalize empty rows (can happen if CSR is not pruned
            # correctly)
            continue

        sum_ = sqrt(sum_)

        for j in xrange(X_indptr[i], X_indptr[i + 1]):
            X_data[j] /= sum_


def assign_rows_csr(X,
                    np.ndarray[np.npy_intp, ndim=1] X_rows,
                    np.ndarray[np.npy_intp, ndim=1] out_rows,
                    np.ndarray[floating, ndim=2, mode="c"] out):
    """Densify selected rows of a CSR matrix into a preallocated array.

    Like out[out_rows] = X[X_rows].toarray() but without copying.
    No-copy supported for both dtype=np.float32 and dtype=np.float64.

    Parameters
    ----------
    X : scipy.sparse.csr_matrix, shape=(n_samples, n_features)
    X_rows : array, dtype=np.intp, shape=n_rows
    out_rows : array, dtype=np.intp, shape=n_rows
    out : array, shape=(arbitrary, n_features)
    """
    cdef:
        # npy_intp (np.intp in Python) is what np.where returns,
        # but int is what scipy.sparse uses.
        int i, ind, j
        np.npy_intp rX
        np.ndarray[floating, ndim=1] data = X.data
        np.ndarray[int, ndim=1] indices = X.indices, indptr = X.indptr

    if X_rows.shape[0] != out_rows.shape[0]:
        raise ValueError("cannot assign %d rows to %d"
                         % (X_rows.shape[0], out_rows.shape[0]))

    out[out_rows] = 0.
    for i in range(X_rows.shape[0]):
        rX = X_rows[i]
        for ind in range(indptr[rX], indptr[rX + 1]):
            j = indices[ind]
            out[out_rows[i], j] = data[ind]