File: testing.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (826 lines) | stat: -rw-r--r-- 28,204 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
"""Testing utilities."""

# Copyright (c) 2011, 2012
# Authors: Pietro Berkes,
#          Andreas Muller
#          Mathieu Blondel
#          Olivier Grisel
#          Arnaud Joly
#          Denis Engemann
#          Giorgio Patrini
#          Thierry Guillemot
# License: BSD 3 clause
import os
import inspect
import pkgutil
import warnings
import sys
import re
import platform
import struct

import scipy as sp
import scipy.io
from functools import wraps
from operator import itemgetter
try:
    # Python 2
    from urllib2 import urlopen
    from urllib2 import HTTPError
except ImportError:
    # Python 3+
    from urllib.request import urlopen
    from urllib.error import HTTPError

import tempfile
import shutil
import os.path as op
import atexit

# WindowsError only exist on Windows
try:
    WindowsError
except NameError:
    WindowsError = None

import sklearn
from sklearn.base import BaseEstimator
from sklearn.externals import joblib

# Conveniently import all assertions in one place.
from nose.tools import assert_equal
from nose.tools import assert_not_equal
from nose.tools import assert_true
from nose.tools import assert_false
from nose.tools import assert_raises
from nose.tools import raises
try:
    from nose.tools import assert_dict_equal
except ImportError:
    # Not in old versions of nose, but is only for formatting anyway
    assert_dict_equal = assert_equal
from nose import SkipTest
from nose import with_setup

from numpy.testing import assert_almost_equal
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_array_less
from numpy.testing import assert_approx_equal
import numpy as np

from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin,
                          ClusterMixin)
from sklearn.cluster import DBSCAN

__all__ = ["assert_equal", "assert_not_equal", "assert_raises",
           "assert_raises_regexp", "raises", "with_setup", "assert_true",
           "assert_false", "assert_almost_equal", "assert_array_equal",
           "assert_array_almost_equal", "assert_array_less",
           "assert_less", "assert_less_equal",
           "assert_greater", "assert_greater_equal",
           "assert_approx_equal"]


try:
    from nose.tools import assert_in, assert_not_in
except ImportError:
    # Nose < 1.0.0

    def assert_in(x, container):
        assert_true(x in container, msg="%r in %r" % (x, container))

    def assert_not_in(x, container):
        assert_false(x in container, msg="%r in %r" % (x, container))

try:
    from nose.tools import assert_raises_regex
except ImportError:
    # for Python 2
    def assert_raises_regex(expected_exception, expected_regexp,
                            callable_obj=None, *args, **kwargs):
        """Helper function to check for message patterns in exceptions."""
        not_raised = False
        try:
            callable_obj(*args, **kwargs)
            not_raised = True
        except expected_exception as e:
            error_message = str(e)
            if not re.compile(expected_regexp).search(error_message):
                raise AssertionError("Error message should match pattern "
                                     "%r. %r does not." %
                                     (expected_regexp, error_message))
        if not_raised:
            raise AssertionError("%s not raised by %s" %
                                 (expected_exception.__name__,
                                  callable_obj.__name__))

# assert_raises_regexp is deprecated in Python 3.4 in favor of
# assert_raises_regex but lets keep the backward compat in scikit-learn with
# the old name for now
assert_raises_regexp = assert_raises_regex


def _assert_less(a, b, msg=None):
    message = "%r is not lower than %r" % (a, b)
    if msg is not None:
        message += ": " + msg
    assert a < b, message


def _assert_greater(a, b, msg=None):
    message = "%r is not greater than %r" % (a, b)
    if msg is not None:
        message += ": " + msg
    assert a > b, message


def assert_less_equal(a, b, msg=None):
    message = "%r is not lower than or equal to %r" % (a, b)
    if msg is not None:
        message += ": " + msg
    assert a <= b, message


def assert_greater_equal(a, b, msg=None):
    message = "%r is not greater than or equal to %r" % (a, b)
    if msg is not None:
        message += ": " + msg
    assert a >= b, message


def assert_warns(warning_class, func, *args, **kw):
    """Test that a certain warning occurs.

    Parameters
    ----------
    warning_class : the warning class
        The class to test for, e.g. UserWarning.

    func : callable
        Calable object to trigger warnings.

    *args : the positional arguments to `func`.

    **kw : the keyword arguments to `func`

    Returns
    -------

    result : the return value of `func`

    """
    # very important to avoid uncontrolled state propagation
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        # Trigger a warning.
        result = func(*args, **kw)
        if hasattr(np, 'VisibleDeprecationWarning'):
            # Filter out numpy-specific warnings in numpy >= 1.9
            w = [e for e in w
                 if e.category is not np.VisibleDeprecationWarning]

        # Verify some things
        if not len(w) > 0:
            raise AssertionError("No warning raised when calling %s"
                                 % func.__name__)

        found = any(warning.category is warning_class for warning in w)
        if not found:
            raise AssertionError("%s did not give warning: %s( is %s)"
                                 % (func.__name__, warning_class, w))
    return result


def assert_warns_message(warning_class, message, func, *args, **kw):
    # very important to avoid uncontrolled state propagation
    """Test that a certain warning occurs and with a certain message.

    Parameters
    ----------
    warning_class : the warning class
        The class to test for, e.g. UserWarning.

    message : str | callable
        The entire message or a substring to  test for. If callable,
        it takes a string as argument and will trigger an assertion error
        if it returns `False`.

    func : callable
        Calable object to trigger warnings.

    *args : the positional arguments to `func`.

    **kw : the keyword arguments to `func`.

    Returns
    -------

    result : the return value of `func`

    """
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        if hasattr(np, 'VisibleDeprecationWarning'):
            # Let's not catch the numpy internal DeprecationWarnings
            warnings.simplefilter('ignore', np.VisibleDeprecationWarning)
        # Trigger a warning.
        result = func(*args, **kw)
        # Verify some things
        if not len(w) > 0:
            raise AssertionError("No warning raised when calling %s"
                                 % func.__name__)

        found = [issubclass(warning.category, warning_class) for warning in w]
        if not any(found):
            raise AssertionError("No warning raised for %s with class "
                                 "%s"
                                 % (func.__name__, warning_class))

        message_found = False
        # Checks the message of all warnings belong to warning_class
        for index in [i for i, x in enumerate(found) if x]:
            # substring will match, the entire message with typo won't
            msg = w[index].message  # For Python 3 compatibility
            msg = str(msg.args[0] if hasattr(msg, 'args') else msg)
            if callable(message):  # add support for certain tests
                check_in_message = message
            else:
                check_in_message = lambda msg: message in msg

            if check_in_message(msg):
                message_found = True
                break

        if not message_found:
            raise AssertionError("Did not receive the message you expected "
                                 "('%s') for <%s>, got: '%s'"
                                 % (message, func.__name__, msg))

    return result


# To remove when we support numpy 1.7
def assert_no_warnings(func, *args, **kw):
    # XXX: once we may depend on python >= 2.6, this can be replaced by the

    # warnings module context manager.
    # very important to avoid uncontrolled state propagation
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')

        result = func(*args, **kw)
        if hasattr(np, 'VisibleDeprecationWarning'):
            # Filter out numpy-specific warnings in numpy >= 1.9
            w = [e for e in w
                 if e.category is not np.VisibleDeprecationWarning]

        if len(w) > 0:
            raise AssertionError("Got warnings when calling %s: [%s]"
                                 % (func.__name__,
                                    ', '.join(str(warning) for warning in w)))
    return result


def ignore_warnings(obj=None, category=Warning):
    """Context manager and decorator to ignore warnings.

    Note. Using this (in both variants) will clear all warnings
    from all python modules loaded. In case you need to test
    cross-module-warning-logging this is not your tool of choice.

    Parameters
    ----------
    category : warning class, defaults to Warning.
        The category to filter. If Warning, all categories will be muted.

    Examples
    --------
    >>> with ignore_warnings():
    ...     warnings.warn('buhuhuhu')

    >>> def nasty_warn():
    ...    warnings.warn('buhuhuhu')
    ...    print(42)

    >>> ignore_warnings(nasty_warn)()
    42
    """
    if callable(obj):
        return _IgnoreWarnings(category=category)(obj)
    else:
        return _IgnoreWarnings(category=category)


class _IgnoreWarnings(object):
    """Improved and simplified Python warnings context manager and decorator.

    This class allows to ignore the warnings raise by a function.
    Copied from Python 2.7.5 and modified as required.

    Parameters
    ----------
    category : tuple of warning class, defaut to Warning
        The category to filter. By default, all the categories will be muted.

    """

    def __init__(self, category):
        self._record = True
        self._module = sys.modules['warnings']
        self._entered = False
        self.log = []
        self.category = category

    def __call__(self, fn):
        """Decorator to catch and hide warnings without visual nesting."""
        @wraps(fn)
        def wrapper(*args, **kwargs):
            # very important to avoid uncontrolled state propagation
            clean_warning_registry()
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", self.category)
                return fn(*args, **kwargs)

        return wrapper

    def __repr__(self):
        args = []
        if self._record:
            args.append("record=True")
        if self._module is not sys.modules['warnings']:
            args.append("module=%r" % self._module)
        name = type(self).__name__
        return "%s(%s)" % (name, ", ".join(args))

    def __enter__(self):
        clean_warning_registry()  # be safe and not propagate state + chaos
        warnings.simplefilter("ignore", self.category)
        if self._entered:
            raise RuntimeError("Cannot enter %r twice" % self)
        self._entered = True
        self._filters = self._module.filters
        self._module.filters = self._filters[:]
        self._showwarning = self._module.showwarning

    def __exit__(self, *exc_info):
        if not self._entered:
            raise RuntimeError("Cannot exit %r without entering first" % self)
        self._module.filters = self._filters
        self._module.showwarning = self._showwarning
        self.log[:] = []
        clean_warning_registry()  # be safe and not propagate state + chaos


try:
    from nose.tools import assert_less
except ImportError:
    assert_less = _assert_less

try:
    from nose.tools import assert_greater
except ImportError:
    assert_greater = _assert_greater


def _assert_allclose(actual, desired, rtol=1e-7, atol=0,
                     err_msg='', verbose=True):
    actual, desired = np.asanyarray(actual), np.asanyarray(desired)
    if np.allclose(actual, desired, rtol=rtol, atol=atol):
        return
    msg = ('Array not equal to tolerance rtol=%g, atol=%g: '
           'actual %s, desired %s') % (rtol, atol, actual, desired)
    raise AssertionError(msg)


if hasattr(np.testing, 'assert_allclose'):
    assert_allclose = np.testing.assert_allclose
else:
    assert_allclose = _assert_allclose


def assert_raise_message(exceptions, message, function, *args, **kwargs):
    """Helper function to test error messages in exceptions.

    Parameters
    ----------
    exceptions : exception or tuple of exception
        Name of the estimator

    function : callable
        Calable object to raise error

    *args : the positional arguments to `function`.

    **kw : the keyword arguments to `function`
    """
    try:
        function(*args, **kwargs)
    except exceptions as e:
        error_message = str(e)
        if message not in error_message:
            raise AssertionError("Error message does not include the expected"
                                 " string: %r. Observed error message: %r" %
                                 (message, error_message))
    else:
        # concatenate exception names
        if isinstance(exceptions, tuple):
            names = " or ".join(e.__name__ for e in exceptions)
        else:
            names = exceptions.__name__

        raise AssertionError("%s not raised by %s" %
                             (names, function.__name__))


def fake_mldata(columns_dict, dataname, matfile, ordering=None):
    """Create a fake mldata data set.

    Parameters
    ----------
    columns_dict : dict, keys=str, values=ndarray
        Contains data as columns_dict[column_name] = array of data.

    dataname : string
        Name of data set.

    matfile : string or file object
        The file name string or the file-like object of the output file.

    ordering : list, default None
        List of column_names, determines the ordering in the data set.

    Notes
    -----
    This function transposes all arrays, while fetch_mldata only transposes
    'data', keep that into account in the tests.
    """
    datasets = dict(columns_dict)

    # transpose all variables
    for name in datasets:
        datasets[name] = datasets[name].T

    if ordering is None:
        ordering = sorted(list(datasets.keys()))
    # NOTE: setting up this array is tricky, because of the way Matlab
    # re-packages 1D arrays
    datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)),
                                                 dtype='object')
    for i, name in enumerate(ordering):
        datasets['mldata_descr_ordering'][0, i] = name

    scipy.io.savemat(matfile, datasets, oned_as='column')


class mock_mldata_urlopen(object):

    def __init__(self, mock_datasets):
        """Object that mocks the urlopen function to fake requests to mldata.

        `mock_datasets` is a dictionary of {dataset_name: data_dict}, or
        {dataset_name: (data_dict, ordering).
        `data_dict` itself is a dictionary of {column_name: data_array},
        and `ordering` is a list of column_names to determine the ordering
        in the data set (see `fake_mldata` for details).

        When requesting a dataset with a name that is in mock_datasets,
        this object creates a fake dataset in a StringIO object and
        returns it. Otherwise, it raises an HTTPError.
        """
        self.mock_datasets = mock_datasets

    def __call__(self, urlname):
        dataset_name = urlname.split('/')[-1]
        if dataset_name in self.mock_datasets:
            resource_name = '_' + dataset_name
            from io import BytesIO
            matfile = BytesIO()

            dataset = self.mock_datasets[dataset_name]
            ordering = None
            if isinstance(dataset, tuple):
                dataset, ordering = dataset
            fake_mldata(dataset, resource_name, matfile, ordering)

            matfile.seek(0)
            return matfile
        else:
            raise HTTPError(urlname, 404, dataset_name + " is not available",
                            [], None)


def install_mldata_mock(mock_datasets):
    # Lazy import to avoid mutually recursive imports
    from sklearn import datasets
    datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets)


def uninstall_mldata_mock():
    # Lazy import to avoid mutually recursive imports
    from sklearn import datasets
    datasets.mldata.urlopen = urlopen


# Meta estimators need another estimator to be instantiated.
META_ESTIMATORS = ["OneVsOneClassifier", "MultiOutputEstimator",
                   "MultiOutputRegressor", "MultiOutputClassifier",
                   "OutputCodeClassifier", "OneVsRestClassifier",
                   "RFE", "RFECV", "BaseEnsemble"]
# estimators that there is no way to default-construct sensibly
OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV",
         "SelectFromModel"]

# some trange ones
DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer',
             'LabelBinarizer', 'LabelEncoder',
             'MultiLabelBinarizer', 'TfidfTransformer',
             'TfidfVectorizer', 'IsotonicRegression',
             'OneHotEncoder', 'RandomTreesEmbedding',
             'FeatureHasher', 'DummyClassifier', 'DummyRegressor',
             'TruncatedSVD', 'PolynomialFeatures',
             'GaussianRandomProjectionHash', 'HashingVectorizer',
             'CheckingClassifier', 'PatchExtractor', 'CountVectorizer',
             # GradientBoosting base estimators, maybe should
             # exclude them in another way
             'ZeroEstimator', 'ScaledLogOddsEstimator',
             'QuantileEstimator', 'MeanEstimator',
             'LogOddsEstimator', 'PriorProbabilityEstimator',
             '_SigmoidCalibration', 'VotingClassifier']


def all_estimators(include_meta_estimators=False,
                   include_other=False, type_filter=None,
                   include_dont_test=False):
    """Get a list of all estimators from sklearn.

    This function crawls the module and gets all classes that inherit
    from BaseEstimator. Classes that are defined in test-modules are not
    included.
    By default meta_estimators such as GridSearchCV are also not included.

    Parameters
    ----------
    include_meta_estimators : boolean, default=False
        Whether to include meta-estimators that can be constructed using
        an estimator as their first argument. These are currently
        BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier,
        OneVsRestClassifier, RFE, RFECV.

    include_other : boolean, default=False
        Wether to include meta-estimators that are somehow special and can
        not be default-constructed sensibly. These are currently
        Pipeline, FeatureUnion and GridSearchCV

    include_dont_test : boolean, default=False
        Whether to include "special" label estimator or test processors.

    type_filter : string, list of string,  or None, default=None
        Which kind of estimators should be returned. If None, no filter is
        applied and all estimators are returned.  Possible values are
        'classifier', 'regressor', 'cluster' and 'transformer' to get
        estimators only of these specific types, or a list of these to
        get the estimators that fit at least one of the types.

    Returns
    -------
    estimators : list of tuples
        List of (name, class), where ``name`` is the class name as string
        and ``class`` is the actuall type of the class.
    """
    def is_abstract(c):
        if not(hasattr(c, '__abstractmethods__')):
            return False
        if not len(c.__abstractmethods__):
            return False
        return True

    all_classes = []
    # get parent folder
    path = sklearn.__path__
    for importer, modname, ispkg in pkgutil.walk_packages(
            path=path, prefix='sklearn.', onerror=lambda x: None):
        if (".tests." in modname):
            continue
        module = __import__(modname, fromlist="dummy")
        classes = inspect.getmembers(module, inspect.isclass)
        all_classes.extend(classes)

    all_classes = set(all_classes)

    estimators = [c for c in all_classes
                  if (issubclass(c[1], BaseEstimator) and
                      c[0] != 'BaseEstimator')]
    # get rid of abstract base classes
    estimators = [c for c in estimators if not is_abstract(c[1])]

    if not include_dont_test:
        estimators = [c for c in estimators if not c[0] in DONT_TEST]

    if not include_other:
        estimators = [c for c in estimators if not c[0] in OTHER]
    # possibly get rid of meta estimators
    if not include_meta_estimators:
        estimators = [c for c in estimators if not c[0] in META_ESTIMATORS]
    if type_filter is not None:
        if not isinstance(type_filter, list):
            type_filter = [type_filter]
        else:
            type_filter = list(type_filter)  # copy
        filtered_estimators = []
        filters = {'classifier': ClassifierMixin,
                   'regressor': RegressorMixin,
                   'transformer': TransformerMixin,
                   'cluster': ClusterMixin}
        for name, mixin in filters.items():
            if name in type_filter:
                type_filter.remove(name)
                filtered_estimators.extend([est for est in estimators
                                            if issubclass(est[1], mixin)])
        estimators = filtered_estimators
        if type_filter:
            raise ValueError("Parameter type_filter must be 'classifier', "
                             "'regressor', 'transformer', 'cluster' or "
                             "None, got"
                             " %s." % repr(type_filter))

    # drop duplicates, sort for reproducibility
    # itemgetter is used to ensure the sort does not extend to the 2nd item of
    # the tuple
    return sorted(set(estimators), key=itemgetter(0))


def set_random_state(estimator, random_state=0):
    """Set random state of an estimator if it has the `random_state` param.

    Classes for whom random_state is deprecated are ignored. Currently DBSCAN
    is one such class.
    """
    if isinstance(estimator, DBSCAN):
        return

    if "random_state" in estimator.get_params():
        estimator.set_params(random_state=random_state)


def if_matplotlib(func):
    """Test decorator that skips test if matplotlib not installed."""
    @wraps(func)
    def run_test(*args, **kwargs):
        try:
            import matplotlib
            matplotlib.use('Agg', warn=False)
            # this fails if no $DISPLAY specified
            import matplotlib.pyplot as plt
            plt.figure()
        except ImportError:
            raise SkipTest('Matplotlib not available.')
        else:
            return func(*args, **kwargs)
    return run_test


def skip_if_32bit(func):
    """Test decorator that skips tests on 32bit platforms."""
    @wraps(func)
    def run_test(*args, **kwargs):
        bits = 8 * struct.calcsize("P")
        if bits == 32:
            raise SkipTest('Test skipped on 32bit platforms.')
        else:
            return func(*args, **kwargs)
    return run_test


def if_not_mac_os(versions=('10.7', '10.8', '10.9'),
                  message='Multi-process bug in Mac OS X >= 10.7 '
                          '(see issue #636)'):
    """Test decorator that skips test if OS is Mac OS X and its
    major version is one of ``versions``.
    """
    warnings.warn("if_not_mac_os is deprecated in 0.17 and will be removed"
                  " in 0.19: use the safer and more generic"
                  " if_safe_multiprocessing_with_blas instead",
                  DeprecationWarning)
    mac_version, _, _ = platform.mac_ver()
    skip = '.'.join(mac_version.split('.')[:2]) in versions

    def decorator(func):
        if skip:
            @wraps(func)
            def func(*args, **kwargs):
                raise SkipTest(message)
        return func
    return decorator


def if_safe_multiprocessing_with_blas(func):
    """Decorator for tests involving both BLAS calls and multiprocessing.

    Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction with
    some implementation of BLAS (or other libraries that manage an internal
    posix thread pool) can cause a crash or a freeze of the Python process.

    In practice all known packaged distributions (from Linux distros or
    Anaconda) of BLAS under Linux seems to be safe. So we this problem seems to
    only impact OSX users.

    This wrapper makes it possible to skip tests that can possibly cause
    this crash under OS X with.

    Under Python 3.4+ it is possible to use the `forkserver` start method
    for multiprocessing to avoid this issue. However it can cause pickling
    errors on interactively defined functions. It therefore not enabled by
    default.
    """
    @wraps(func)
    def run_test(*args, **kwargs):
        if sys.platform == 'darwin':
            raise SkipTest(
                "Possible multi-process bug with some BLAS")
        return func(*args, **kwargs)
    return run_test


def clean_warning_registry():
    """Safe way to reset warnings."""
    warnings.resetwarnings()
    reg = "__warningregistry__"
    for mod_name, mod in list(sys.modules.items()):
        if 'six.moves' in mod_name:
            continue
        if hasattr(mod, reg):
            getattr(mod, reg).clear()


def check_skip_network():
    if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)):
        raise SkipTest("Text tutorial requires large dataset download")


def check_skip_travis():
    """Skip test if being run on Travis."""
    if os.environ.get('TRAVIS') == "true":
        raise SkipTest("This test needs to be skipped on Travis")


def _delete_folder(folder_path, warn=False):
    """Utility function to cleanup a temporary folder if still existing.

    Copy from joblib.pool (for independence).
    """
    try:
        if os.path.exists(folder_path):
            # This can fail under windows,
            #  but will succeed when called by atexit
            shutil.rmtree(folder_path)
    except WindowsError:
        if warn:
            warnings.warn("Could not delete temporary folder %s" % folder_path)


class TempMemmap(object):
    def __init__(self, data, mmap_mode='r'):
        self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_')
        self.mmap_mode = mmap_mode
        self.data = data

    def __enter__(self):
        fpath = op.join(self.temp_folder, 'data.pkl')
        joblib.dump(self.data, fpath)
        data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode)
        atexit.register(lambda: _delete_folder(self.temp_folder, warn=True))
        return data_read_only

    def __exit__(self, exc_type, exc_val, exc_tb):
        _delete_folder(self.temp_folder)


with_network = with_setup(check_skip_network)
with_travis = with_setup(check_skip_travis)


class _named_check(object):
    """Wraps a check to show a useful description

    Parameters
    ----------
    check : function
        Must have ``__name__`` and ``__call__``
    arg_text : str
        A summary of arguments to the check
    """
    # Setting the description on the function itself can give incorrect results
    # in failing tests
    def __init__(self, check, arg_text):
        self.check = check
        self.description = ("{0[1]}.{0[3]}:{1.__name__}({2})".format(
            inspect.stack()[1], check, arg_text))

    def __call__(self, *args, **kwargs):
        return self.check(*args, **kwargs)