File: test_utils.py

package info (click to toggle)
scikit-learn 0.18-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 71,040 kB
  • ctags: 91,142
  • sloc: python: 97,257; ansic: 8,360; cpp: 5,649; makefile: 242; sh: 238
file content (267 lines) | stat: -rw-r--r-- 9,089 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import warnings

import numpy as np
import scipy.sparse as sp
from scipy.linalg import pinv2
from itertools import chain

from sklearn.utils.testing import (assert_equal, assert_raises, assert_true,
                                   assert_almost_equal, assert_array_equal,
                                   SkipTest, assert_raises_regex,
                                   assert_greater_equal)

from sklearn.utils import check_random_state
from sklearn.utils import deprecated
from sklearn.utils import resample
from sklearn.utils import safe_mask
from sklearn.utils import column_or_1d
from sklearn.utils import safe_indexing
from sklearn.utils import shuffle
from sklearn.utils import gen_even_slices
from sklearn.utils.extmath import pinvh
from sklearn.utils.arpack import eigsh
from sklearn.utils.mocking import MockDataFrame
from sklearn.utils.graph import graph_laplacian


def test_make_rng():
    # Check the check_random_state utility function behavior
    assert_true(check_random_state(None) is np.random.mtrand._rand)
    assert_true(check_random_state(np.random) is np.random.mtrand._rand)

    rng_42 = np.random.RandomState(42)
    assert_true(check_random_state(42).randint(100) == rng_42.randint(100))

    rng_42 = np.random.RandomState(42)
    assert_true(check_random_state(rng_42) is rng_42)

    rng_42 = np.random.RandomState(42)
    assert_true(check_random_state(43).randint(100) != rng_42.randint(100))

    assert_raises(ValueError, check_random_state, "some invalid seed")


def test_deprecated():
    # Test whether the deprecated decorator issues appropriate warnings
    # Copied almost verbatim from http://docs.python.org/library/warnings.html

    # First a function...
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        @deprecated()
        def ham():
            return "spam"

        spam = ham()

        assert_equal(spam, "spam")     # function must remain usable

        assert_equal(len(w), 1)
        assert_true(issubclass(w[0].category, DeprecationWarning))
        assert_true("deprecated" in str(w[0].message).lower())

    # ... then a class.
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        @deprecated("don't use this")
        class Ham(object):
            SPAM = 1

        ham = Ham()

        assert_true(hasattr(ham, "SPAM"))

        assert_equal(len(w), 1)
        assert_true(issubclass(w[0].category, DeprecationWarning))
        assert_true("deprecated" in str(w[0].message).lower())


def test_resample():
    # Border case not worth mentioning in doctests
    assert_true(resample() is None)

    # Check that invalid arguments yield ValueError
    assert_raises(ValueError, resample, [0], [0, 1])
    assert_raises(ValueError, resample, [0, 1], [0, 1],
                  replace=False, n_samples=3)
    assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42)
    # Issue:6581, n_samples can be more when replace is True (default).
    assert_equal(len(resample([1, 2], n_samples=5)), 5)


def test_safe_mask():
    random_state = check_random_state(0)
    X = random_state.rand(5, 4)
    X_csr = sp.csr_matrix(X)
    mask = [False, False, True, True, True]

    mask = safe_mask(X, mask)
    assert_equal(X[mask].shape[0], 3)

    mask = safe_mask(X_csr, mask)
    assert_equal(X_csr[mask].shape[0], 3)


def test_pinvh_simple_real():
    a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64)
    a = np.dot(a, a.T)
    a_pinv = pinvh(a)
    assert_almost_equal(np.dot(a, a_pinv), np.eye(3))


def test_pinvh_nonpositive():
    a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64)
    a = np.dot(a, a.T)
    u, s, vt = np.linalg.svd(a)
    s[0] *= -1
    a = np.dot(u * s, vt)  # a is now symmetric non-positive and singular
    a_pinv = pinv2(a)
    a_pinvh = pinvh(a)
    assert_almost_equal(a_pinv, a_pinvh)


def test_pinvh_simple_complex():
    a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
         + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]]))
    a = np.dot(a, a.conj().T)
    a_pinv = pinvh(a)
    assert_almost_equal(np.dot(a, a_pinv), np.eye(3))


def test_arpack_eigsh_initialization():
    # Non-regression test that shows null-space computation is better with
    # initialization of eigsh from [-1,1] instead of [0,1]
    random_state = check_random_state(42)

    A = random_state.rand(50, 50)
    A = np.dot(A.T, A)  # create s.p.d. matrix
    A = graph_laplacian(A) + 1e-7 * np.identity(A.shape[0])
    k = 5

    # Test if eigsh is working correctly
    # New initialization [-1,1] (as in original ARPACK)
    # Was [0,1] before, with which this test could fail
    v0 = random_state.uniform(-1,1, A.shape[0])
    w, _ = eigsh(A, k=k, sigma=0.0, v0=v0)

    # Eigenvalues of s.p.d. matrix should be nonnegative, w[0] is smallest
    assert_greater_equal(w[0], 0)


def test_column_or_1d():
    EXAMPLES = [
        ("binary", ["spam", "egg", "spam"]),
        ("binary", [0, 1, 0, 1]),
        ("continuous", np.arange(10) / 20.),
        ("multiclass", [1, 2, 3]),
        ("multiclass", [0, 1, 2, 2, 0]),
        ("multiclass", [[1], [2], [3]]),
        ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
        ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("continuous-multioutput", np.arange(30).reshape((-1, 3))),
    ]

    for y_type, y in EXAMPLES:
        if y_type in ["binary", 'multiclass', "continuous"]:
            assert_array_equal(column_or_1d(y), np.ravel(y))
        else:
            assert_raises(ValueError, column_or_1d, y)


def test_safe_indexing():
    X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    inds = np.array([1, 2])
    X_inds = safe_indexing(X, inds)
    X_arrays = safe_indexing(np.array(X), inds)
    assert_array_equal(np.array(X_inds), X_arrays)
    assert_array_equal(np.array(X_inds), np.array(X)[inds])


def test_safe_indexing_pandas():
    try:
        import pandas as pd
    except ImportError:
        raise SkipTest("Pandas not found")
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    X_df = pd.DataFrame(X)
    inds = np.array([1, 2])
    X_df_indexed = safe_indexing(X_df, inds)
    X_indexed = safe_indexing(X_df, inds)
    assert_array_equal(np.array(X_df_indexed), X_indexed)
    # fun with read-only data in dataframes
    # this happens in joblib memmapping
    X.setflags(write=False)
    X_df_readonly = pd.DataFrame(X)
    with warnings.catch_warnings(record=True):
        X_df_ro_indexed = safe_indexing(X_df_readonly, inds)

    assert_array_equal(np.array(X_df_ro_indexed), X_indexed)


def test_safe_indexing_mock_pandas():
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    X_df = MockDataFrame(X)
    inds = np.array([1, 2])
    X_df_indexed = safe_indexing(X_df, inds)
    X_indexed = safe_indexing(X_df, inds)
    assert_array_equal(np.array(X_df_indexed), X_indexed)


def test_shuffle_on_ndim_equals_three():
    def to_tuple(A):    # to make the inner arrays hashable
        return tuple(tuple(tuple(C) for C in B) for B in A)

    A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])  # A.shape = (2,2,2)
    S = set(to_tuple(A))
    shuffle(A)  # shouldn't raise a ValueError for dim = 3
    assert_equal(set(to_tuple(A)), S)


def test_shuffle_dont_convert_to_array():
    # Check that shuffle does not try to convert to numpy arrays with float
    # dtypes can let any indexable datastructure pass-through.
    a = ['a', 'b', 'c']
    b = np.array(['a', 'b', 'c'], dtype=object)
    c = [1, 2, 3]
    d = MockDataFrame(np.array([['a', 0],
                                ['b', 1],
                                ['c', 2]],
                      dtype=object))
    e = sp.csc_matrix(np.arange(6).reshape(3, 2))
    a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0)

    assert_equal(a_s, ['c', 'b', 'a'])
    assert_equal(type(a_s), list)

    assert_array_equal(b_s, ['c', 'b', 'a'])
    assert_equal(b_s.dtype, object)

    assert_equal(c_s, [3, 2, 1])
    assert_equal(type(c_s), list)

    assert_array_equal(d_s, np.array([['c', 2],
                                      ['b', 1],
                                      ['a', 0]],
                                     dtype=object))
    assert_equal(type(d_s), MockDataFrame)

    assert_array_equal(e_s.toarray(), np.array([[4, 5],
                                                [2, 3],
                                                [0, 1]]))


def test_gen_even_slices():
    # check that gen_even_slices contains all samples
    some_range = range(10)
    joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)]))
    assert_array_equal(some_range, joined_range)

    # check that passing negative n_chunks raises an error
    slices = gen_even_slices(10, -1)
    assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be"
                        " >=1", next, slices)