1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
.. currentmodule:: sklearn.model_selection
.. _grid_search:
===========================================
Tuning the hyper-parameters of an estimator
===========================================
Hyper-parameters are parameters that are not directly learnt within estimators.
In scikit-learn they are passed as arguments to the constructor of the
estimator classes. Typical examples include ``C``, ``kernel`` and ``gamma``
for Support Vector Classifier, ``alpha`` for Lasso, etc.
It is possible and recommended to search the hyper-parameter space for the
best :ref:`cross validation <cross_validation>` score.
Any parameter provided when constructing an estimator may be optimized in this
manner. Specifically, to find the names and current values for all parameters
for a given estimator, use::
estimator.get_params()
A search consists of:
- an estimator (regressor or classifier such as ``sklearn.svm.SVC()``);
- a parameter space;
- a method for searching or sampling candidates;
- a cross-validation scheme; and
- a :ref:`score function <gridsearch_scoring>`.
Some models allow for specialized, efficient parameter search strategies,
:ref:`outlined below <alternative_cv>`.
Two generic approaches to sampling search candidates are provided in
scikit-learn: for given values, :class:`GridSearchCV` exhaustively considers
all parameter combinations, while :class:`RandomizedSearchCV` can sample a
given number of candidates from a parameter space with a specified
distribution. After describing these tools we detail
:ref:`best practice <grid_search_tips>` applicable to both approaches.
Note that it is common that a small subset of those parameters can have a large
impact on the predictive or computation performance of the model while others
can be left to their default values. It is recommended to read the docstring of
the estimator class to get a finer understanding of their expected behavior,
possibly by reading the enclosed reference to the literature.
Exhaustive Grid Search
======================
The grid search provided by :class:`GridSearchCV` exhaustively generates
candidates from a grid of parameter values specified with the ``param_grid``
parameter. For instance, the following ``param_grid``::
param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
]
specifies that two grids should be explored: one with a linear kernel and
C values in [1, 10, 100, 1000], and the second one with an RBF kernel,
and the cross-product of C values ranging in [1, 10, 100, 1000] and gamma
values in [0.001, 0.0001].
The :class:`GridSearchCV` instance implements the usual estimator API: when
"fitting" it on a dataset all the possible combinations of parameter values are
evaluated and the best combination is retained.
.. currentmodule:: sklearn.model_selection
.. topic:: Examples:
- See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` for an example of
Grid Search computation on the digits dataset.
- See :ref:`sphx_glr_auto_examples_model_selection_grid_search_text_feature_extraction.py` for an example
of Grid Search coupling parameters from a text documents feature
extractor (n-gram count vectorizer and TF-IDF transformer) with a
classifier (here a linear SVM trained with SGD with either elastic
net or L2 penalty) using a :class:`pipeline.Pipeline` instance.
- See :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py`
for an example of Grid Search within a cross validation loop on the iris
dataset. This is the best practice for evaluating the performance of a
model with grid search.
- See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`
for an example of :class:`GridSearchCV` being used to evaluate multiple
metrics simultaneously.
.. _randomized_parameter_search:
Randomized Parameter Optimization
=================================
While using a grid of parameter settings is currently the most widely used
method for parameter optimization, other search methods have more
favourable properties.
:class:`RandomizedSearchCV` implements a randomized search over parameters,
where each setting is sampled from a distribution over possible parameter values.
This has two main benefits over an exhaustive search:
* A budget can be chosen independent of the number of parameters and possible values.
* Adding parameters that do not influence the performance does not decrease efficiency.
Specifying how parameters should be sampled is done using a dictionary, very
similar to specifying parameters for :class:`GridSearchCV`. Additionally,
a computation budget, being the number of sampled candidates or sampling
iterations, is specified using the ``n_iter`` parameter.
For each parameter, either a distribution over possible values or a list of
discrete choices (which will be sampled uniformly) can be specified::
{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['balanced', None]}
This example uses the ``scipy.stats`` module, which contains many useful
distributions for sampling parameters, such as ``expon``, ``gamma``,
``uniform`` or ``randint``.
In principle, any function can be passed that provides a ``rvs`` (random
variate sample) method to sample a value. A call to the ``rvs`` function should
provide independent random samples from possible parameter values on
consecutive calls.
.. warning::
The distributions in ``scipy.stats`` prior to version scipy 0.16
do not allow specifying a random state. Instead, they use the global
numpy random state, that can be seeded via ``np.random.seed`` or set
using ``np.random.set_state``. However, beginning scikit-learn 0.18,
the :mod:`sklearn.model_selection` module sets the random state provided
by the user if scipy >= 0.16 is also available.
For continuous parameters, such as ``C`` above, it is important to specify
a continuous distribution to take full advantage of the randomization. This way,
increasing ``n_iter`` will always lead to a finer search.
.. topic:: Examples:
* :ref:`sphx_glr_auto_examples_model_selection_plot_randomized_search.py` compares the usage and efficiency
of randomized search and grid search.
.. topic:: References:
* Bergstra, J. and Bengio, Y.,
Random search for hyper-parameter optimization,
The Journal of Machine Learning Research (2012)
.. _grid_search_tips:
Tips for parameter search
=========================
.. _gridsearch_scoring:
Specifying an objective metric
------------------------------
By default, parameter search uses the ``score`` function of the estimator
to evaluate a parameter setting. These are the
:func:`sklearn.metrics.accuracy_score` for classification and
:func:`sklearn.metrics.r2_score` for regression. For some applications,
other scoring functions are better suited (for example in unbalanced
classification, the accuracy score is often uninformative). An alternative
scoring function can be specified via the ``scoring`` parameter to
:class:`GridSearchCV`, :class:`RandomizedSearchCV` and many of the
specialized cross-validation tools described below.
See :ref:`scoring_parameter` for more details.
.. _multimetric_grid_search:
Specifying multiple metrics for evaluation
------------------------------------------
``GridSearchCV`` and ``RandomizedSearchCV`` allow specifying multiple metrics
for the ``scoring`` parameter.
Multimetric scoring can either be specified as a list of strings of predefined
scores names or a dict mapping the scorer name to the scorer function and/or
the predefined scorer name(s). See :ref:`multimetric_scoring` for more details.
When specifying multiple metrics, the ``refit`` parameter must be set to the
metric (string) for which the ``best_params_`` will be found and used to build
the ``best_estimator_`` on the whole dataset. If the search should not be
refit, set ``refit=False``. Leaving refit to the default value ``None`` will
result in an error when using multiple metrics.
See :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py`
for an example usage.
Composite estimators and parameter spaces
-----------------------------------------
:ref:`pipeline` describes building composite estimators whose
parameter space can be searched with these tools.
Model selection: development and evaluation
-------------------------------------------
Model selection by evaluating various parameter settings can be seen as a way
to use the labeled data to "train" the parameters of the grid.
When evaluating the resulting model it is important to do it on
held-out samples that were not seen during the grid search process:
it is recommended to split the data into a **development set** (to
be fed to the ``GridSearchCV`` instance) and an **evaluation set**
to compute performance metrics.
This can be done by using the :func:`train_test_split`
utility function.
Parallelism
-----------
:class:`GridSearchCV` and :class:`RandomizedSearchCV` evaluate each parameter
setting independently. Computations can be run in parallel if your OS
supports it, by using the keyword ``n_jobs=-1``. See function signature for
more details.
Robustness to failure
---------------------
Some parameter settings may result in a failure to ``fit`` one or more folds
of the data. By default, this will cause the entire search to fail, even if
some parameter settings could be fully evaluated. Setting ``error_score=0``
(or `=np.NaN`) will make the procedure robust to such failure, issuing a
warning and setting the score for that fold to 0 (or `NaN`), but completing
the search.
.. _alternative_cv:
Alternatives to brute force parameter search
============================================
Model specific cross-validation
-------------------------------
Some models can fit data for a range of values of some parameter almost
as efficiently as fitting the estimator for a single value of the
parameter. This feature can be leveraged to perform a more efficient
cross-validation used for model selection of this parameter.
The most common parameter amenable to this strategy is the parameter
encoding the strength of the regularizer. In this case we say that we
compute the **regularization path** of the estimator.
Here is the list of such models:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.ElasticNetCV
linear_model.LarsCV
linear_model.LassoCV
linear_model.LassoLarsCV
linear_model.LogisticRegressionCV
linear_model.MultiTaskElasticNetCV
linear_model.MultiTaskLassoCV
linear_model.OrthogonalMatchingPursuitCV
linear_model.RidgeCV
linear_model.RidgeClassifierCV
Information Criterion
---------------------
Some models can offer an information-theoretic closed-form formula of the
optimal estimate of the regularization parameter by computing a single
regularization path (instead of several when using cross-validation).
Here is the list of models benefiting from the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC) for automated
model selection:
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.LassoLarsIC
.. _out_of_bag:
Out of Bag Estimates
--------------------
When using ensemble methods base upon bagging, i.e. generating new
training sets using sampling with replacement, part of the training set
remains unused. For each classifier in the ensemble, a different part
of the training set is left out.
This left out portion can be used to estimate the generalization error
without having to rely on a separate validation set. This estimate
comes "for free" as no additional data is needed and can be used for
model selection.
This is currently implemented in the following classes:
.. autosummary::
:toctree: generated/
:template: class.rst
ensemble.RandomForestClassifier
ensemble.RandomForestRegressor
ensemble.ExtraTreesClassifier
ensemble.ExtraTreesRegressor
ensemble.GradientBoostingClassifier
ensemble.GradientBoostingRegressor
|