1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
.. _multiclass:
====================================
Multiclass and multilabel algorithms
====================================
.. currentmodule:: sklearn.multiclass
.. warning::
All classifiers in scikit-learn do multiclass classification
out-of-the-box. You don't need to use the :mod:`sklearn.multiclass` module
unless you want to experiment with different multiclass strategies.
The :mod:`sklearn.multiclass` module implements *meta-estimators* to solve
``multiclass`` and ``multilabel`` classification problems
by decomposing such problems into binary classification problems. Multitarget
regression is also supported.
- **Multiclass classification** means a classification task with more than
two classes; e.g., classify a set of images of fruits which may be oranges,
apples, or pears. Multiclass classification makes the assumption that each
sample is assigned to one and only one label: a fruit can be either an
apple or a pear but not both at the same time.
- **Multilabel classification** assigns to each sample a set of target
labels. This can be thought as predicting properties of a data-point
that are not mutually exclusive, such as topics that are relevant for a
document. A text might be about any of religion, politics, finance or
education at the same time or none of these.
- **Multioutput regression** assigns each sample a set of target
values. This can be thought of as predicting several properties
for each data-point, such as wind direction and magnitude at a
certain location.
- **Multioutput-multiclass classification** and **multi-task classification**
means that a single estimator has to handle several joint classification
tasks. This is both a generalization of the multi-label classification
task, which only considers binary classification, as well as a
generalization of the multi-class classification task. *The output format
is a 2d numpy array or sparse matrix.*
The set of labels can be different for each output variable.
For instance, a sample could be assigned "pear" for an output variable that
takes possible values in a finite set of species such as "pear", "apple";
and "blue" or "green" for a second output variable that takes possible values
in a finite set of colors such as "green", "red", "blue", "yellow"...
This means that any classifiers handling multi-output
multiclass or multi-task classification tasks,
support the multi-label classification task as a special case.
Multi-task classification is similar to the multi-output
classification task with different model formulations. For
more information, see the relevant estimator documentation.
All scikit-learn classifiers are capable of multiclass classification,
but the meta-estimators offered by :mod:`sklearn.multiclass`
permit changing the way they handle more than two classes
because this may have an effect on classifier performance
(either in terms of generalization error or required computational resources).
Below is a summary of the classifiers supported by scikit-learn
grouped by strategy; you don't need the meta-estimators in this class
if you're using one of these, unless you want custom multiclass behavior:
- **Inherently multiclass:**
- :class:`sklearn.naive_bayes.BernoulliNB`
- :class:`sklearn.tree.DecisionTreeClassifier`
- :class:`sklearn.tree.ExtraTreeClassifier`
- :class:`sklearn.ensemble.ExtraTreesClassifier`
- :class:`sklearn.naive_bayes.GaussianNB`
- :class:`sklearn.neighbors.KNeighborsClassifier`
- :class:`sklearn.semi_supervised.LabelPropagation`
- :class:`sklearn.semi_supervised.LabelSpreading`
- :class:`sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
- :class:`sklearn.svm.LinearSVC` (setting multi_class="crammer_singer")
- :class:`sklearn.linear_model.LogisticRegression` (setting multi_class="multinomial")
- :class:`sklearn.linear_model.LogisticRegressionCV` (setting multi_class="multinomial")
- :class:`sklearn.neural_network.MLPClassifier`
- :class:`sklearn.neighbors.NearestCentroid`
- :class:`sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
- :class:`sklearn.neighbors.RadiusNeighborsClassifier`
- :class:`sklearn.ensemble.RandomForestClassifier`
- :class:`sklearn.linear_model.RidgeClassifier`
- :class:`sklearn.linear_model.RidgeClassifierCV`
- **Multiclass as One-Vs-One:**
- :class:`sklearn.svm.NuSVC`
- :class:`sklearn.svm.SVC`.
- :class:`sklearn.gaussian_process.GaussianProcessClassifier` (setting multi_class = "one_vs_one")
- **Multiclass as One-Vs-All:**
- :class:`sklearn.ensemble.GradientBoostingClassifier`
- :class:`sklearn.gaussian_process.GaussianProcessClassifier` (setting multi_class = "one_vs_rest")
- :class:`sklearn.svm.LinearSVC` (setting multi_class="ovr")
- :class:`sklearn.linear_model.LogisticRegression` (setting multi_class="ovr")
- :class:`sklearn.linear_model.LogisticRegressionCV` (setting multi_class="ovr")
- :class:`sklearn.linear_model.SGDClassifier`
- :class:`sklearn.linear_model.Perceptron`
- :class:`sklearn.linear_model.PassiveAggressiveClassifier`
- **Support multilabel:**
- :class:`sklearn.tree.DecisionTreeClassifier`
- :class:`sklearn.tree.ExtraTreeClassifier`
- :class:`sklearn.ensemble.ExtraTreesClassifier`
- :class:`sklearn.neighbors.KNeighborsClassifier`
- :class:`sklearn.neural_network.MLPClassifier`
- :class:`sklearn.neighbors.RadiusNeighborsClassifier`
- :class:`sklearn.ensemble.RandomForestClassifier`
- :class:`sklearn.linear_model.RidgeClassifierCV`
- **Support multiclass-multioutput:**
- :class:`sklearn.tree.DecisionTreeClassifier`
- :class:`sklearn.tree.ExtraTreeClassifier`
- :class:`sklearn.ensemble.ExtraTreesClassifier`
- :class:`sklearn.neighbors.KNeighborsClassifier`
- :class:`sklearn.neighbors.RadiusNeighborsClassifier`
- :class:`sklearn.ensemble.RandomForestClassifier`
.. warning::
At present, no metric in :mod:`sklearn.metrics`
supports the multioutput-multiclass classification task.
Multilabel classification format
================================
In multilabel learning, the joint set of binary classification tasks is
expressed with label binary indicator array: each sample is one row of a 2d
array of shape (n_samples, n_classes) with binary values: the one, i.e. the non
zero elements, corresponds to the subset of labels. An array such as
``np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]])`` represents label 0 in the first
sample, labels 1 and 2 in the second sample, and no labels in the third sample.
Producing multilabel data as a list of sets of labels may be more intuitive.
The :class:`MultiLabelBinarizer <sklearn.preprocessing.MultiLabelBinarizer>`
transformer can be used to convert between a collection of collections of
labels and the indicator format.
>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> y = [[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]]
>>> MultiLabelBinarizer().fit_transform(y)
array([[0, 0, 1, 1, 1],
[0, 0, 1, 0, 0],
[1, 1, 0, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]])
.. _ovr_classification:
One-Vs-The-Rest
===============
This strategy, also known as **one-vs-all**, is implemented in
:class:`OneVsRestClassifier`. The strategy consists in fitting one classifier
per class. For each classifier, the class is fitted against all the other
classes. In addition to its computational efficiency (only `n_classes`
classifiers are needed), one advantage of this approach is its
interpretability. Since each class is represented by one and only one classifier,
it is possible to gain knowledge about the class by inspecting its
corresponding classifier. This is the most commonly used strategy and is a fair
default choice.
Multiclass learning
-------------------
Below is an example of multiclass learning using OvR::
>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X) # doctest: +NORMALIZE_WHITESPACE
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
Multilabel learning
-------------------
:class:`OneVsRestClassifier` also supports multilabel classification.
To use this feature, feed the classifier an indicator matrix, in which cell
[i, j] indicates the presence of label j in sample i.
.. figure:: ../auto_examples/images/sphx_glr_plot_multilabel_001.png
:target: ../auto_examples/plot_multilabel.html
:align: center
:scale: 75%
.. topic:: Examples:
* :ref:`sphx_glr_auto_examples_plot_multilabel.py`
.. _ovo_classification:
One-Vs-One
==========
:class:`OneVsOneClassifier` constructs one classifier per pair of classes.
At prediction time, the class which received the most votes is selected.
In the event of a tie (among two classes with an equal number of votes), it
selects the class with the highest aggregate classification confidence by
summing over the pair-wise classification confidence levels computed by the
underlying binary classifiers.
Since it requires to fit ``n_classes * (n_classes - 1) / 2`` classifiers,
this method is usually slower than one-vs-the-rest, due to its
O(n_classes^2) complexity. However, this method may be advantageous for
algorithms such as kernel algorithms which don't scale well with
``n_samples``. This is because each individual learning problem only involves
a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used ``n_classes`` times.
Multiclass learning
-------------------
Below is an example of multiclass learning using OvO::
>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> OneVsOneClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X) # doctest: +NORMALIZE_WHITESPACE
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
.. topic:: References:
* "Pattern Recognition and Machine Learning. Springer",
Christopher M. Bishop, page 183, (First Edition)
.. _ecoc:
Error-Correcting Output-Codes
=============================
Output-code based strategies are fairly different from one-vs-the-rest and
one-vs-one. With these strategies, each class is represented in a Euclidean
space, where each dimension can only be 0 or 1. Another way to put it is
that each class is represented by a binary code (an array of 0 and 1). The
matrix which keeps track of the location/code of each class is called the
code book. The code size is the dimensionality of the aforementioned space.
Intuitively, each class should be represented by a code as unique as
possible and a good code book should be designed to optimize classification
accuracy. In this implementation, we simply use a randomly-generated code
book as advocated in [3]_ although more elaborate methods may be added in the
future.
At fitting time, one binary classifier per bit in the code book is fitted.
At prediction time, the classifiers are used to project new points in the
class space and the class closest to the points is chosen.
In :class:`OutputCodeClassifier`, the ``code_size`` attribute allows the user to
control the number of classifiers which will be used. It is a percentage of the
total number of classes.
A number between 0 and 1 will require fewer classifiers than
one-vs-the-rest. In theory, ``log2(n_classes) / n_classes`` is sufficient to
represent each class unambiguously. However, in practice, it may not lead to
good accuracy since ``log2(n_classes)`` is much smaller than n_classes.
A number greater than 1 will require more classifiers than
one-vs-the-rest. In this case, some classifiers will in theory correct for
the mistakes made by other classifiers, hence the name "error-correcting".
In practice, however, this may not happen as classifier mistakes will
typically be correlated. The error-correcting output codes have a similar
effect to bagging.
Multiclass learning
-------------------
Below is an example of multiclass learning using Output-Codes::
>>> from sklearn import datasets
>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.svm import LinearSVC
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf = OutputCodeClassifier(LinearSVC(random_state=0),
... code_size=2, random_state=0)
>>> clf.fit(X, y).predict(X) # doctest: +NORMALIZE_WHITESPACE
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
.. topic:: References:
* "Solving multiclass learning problems via error-correcting output codes",
Dietterich T., Bakiri G.,
Journal of Artificial Intelligence Research 2,
1995.
.. [3] "The error coding method and PICTs",
James G., Hastie T.,
Journal of Computational and Graphical statistics 7,
1998.
* "The Elements of Statistical Learning",
Hastie T., Tibshirani R., Friedman J., page 606 (second-edition)
2008.
Multioutput regression
======================
Multioutput regression support can be added to any regressor with
:class:`MultiOutputRegressor`. This strategy consists of fitting one
regressor per target. Since each target is represented by exactly one
regressor it is possible to gain knowledge about the target by
inspecting its corresponding regressor. As
:class:`MultiOutputRegressor` fits one regressor per target it can not
take advantage of correlations between targets.
Below is an example of multioutput regression:
>>> from sklearn.datasets import make_regression
>>> from sklearn.multioutput import MultiOutputRegressor
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_regression(n_samples=10, n_targets=3, random_state=1)
>>> MultiOutputRegressor(GradientBoostingRegressor(random_state=0)).fit(X, y).predict(X)
array([[-154.75474165, -147.03498585, -50.03812219],
[ 7.12165031, 5.12914884, -81.46081961],
[-187.8948621 , -100.44373091, 13.88978285],
[-141.62745778, 95.02891072, -191.48204257],
[ 97.03260883, 165.34867495, 139.52003279],
[ 123.92529176, 21.25719016, -7.84253 ],
[-122.25193977, -85.16443186, -107.12274212],
[ -30.170388 , -94.80956739, 12.16979946],
[ 140.72667194, 176.50941682, -17.50447799],
[ 149.37967282, -81.15699552, -5.72850319]])
Multioutput classification
==========================
Multioutput classification support can be added to any classifier with
:class:`MultiOutputClassifier`. This strategy consists of fitting one
classifier per target. This allows multiple target variable
classifications. The purpose of this class is to extend estimators
to be able to estimate a series of target functions (f1,f2,f3...,fn)
that are trained on a single X predictor matrix to predict a series
of responses (y1,y2,y3...,yn).
Below is an example of multioutput classification:
>>> from sklearn.datasets import make_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.utils import shuffle
>>> import numpy as np
>>> X, y1 = make_classification(n_samples=10, n_features=100, n_informative=30, n_classes=3, random_state=1)
>>> y2 = shuffle(y1, random_state=1)
>>> y3 = shuffle(y1, random_state=2)
>>> Y = np.vstack((y1, y2, y3)).T
>>> n_samples, n_features = X.shape # 10,100
>>> n_outputs = Y.shape[1] # 3
>>> n_classes = 3
>>> forest = RandomForestClassifier(n_estimators=100, random_state=1)
>>> multi_target_forest = MultiOutputClassifier(forest, n_jobs=-1)
>>> multi_target_forest.fit(X, Y).predict(X)
array([[2, 2, 0],
[1, 2, 1],
[2, 1, 0],
[0, 0, 2],
[0, 2, 1],
[0, 0, 2],
[1, 1, 0],
[1, 1, 1],
[0, 0, 2],
[2, 0, 0]])
.. _classifierchain:
Classifier Chain
================
Classifier chains (see :class:`ClassifierChain`) are a way of combining a
number of binary classifiers into a single multi-label model that is capable
of exploiting correlations among targets.
For a multi-label classification problem with N classes, N binary
classifiers are assigned an integer between 0 and N-1. These integers
define the order of models in the chain. Each classifier is then fit on the
available training data plus the true labels of the classes whose
models were assigned a lower number.
When predicting, the true labels will not be available. Instead the
predictions of each model are passed on to the subsequent models in the
chain to be used as features.
Clearly the order of the chain is important. The first model in the chain
has no information about the other labels while the last model in the chain
has features indicating the presence of all of the other labels. In general
one does not know the optimal ordering of the models in the chain so
typically many randomly ordered chains are fit and their predictions are
averaged together.
.. topic:: References:
Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank,
"Classifier Chains for Multi-label Classification", 2009.
.. _regressorchain:
Regressor Chain
================
Regressor chains (see :class:`RegressorChain`) is analogous to
ClassifierChain as a way of combining a number of regressions
into a single multi-target model that is capable of exploiting
correlations among targets.
|