File: plot_classification_probability.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (98 lines) | stat: -rw-r--r-- 3,509 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
===============================
Plot classification probability
===============================

Plot the classification probability for different classifiers. We use a 3 class
dataset, and we classify it with a Support Vector classifier, L1 and L2
penalized logistic regression with either a One-Vs-Rest or multinomial setting,
and Gaussian process classification.

Linear SVC is not a probabilistic classifier by default but it has a built-in
calibration option enabled in this example (`probability=True`).

The logistic regression with One-Vs-Rest is not a multiclass classifier out of
the box. As a result it has more trouble in separating class 2 and 3 than the
other estimators.
"""
print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:, 0:2]  # we only take the first two features for visualization
y = iris.target

n_features = X.shape[1]

C = 10
kernel = 1.0 * RBF([1.0, 1.0])  # for GPC

# Create different classifiers.
classifiers = {
    'L1 logistic': LogisticRegression(C=C, penalty='l1',
                                      solver='saga',
                                      multi_class='multinomial',
                                      max_iter=10000),
    'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2',
                                                    solver='saga',
                                                    multi_class='multinomial',
                                                    max_iter=10000),
    'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2',
                                            solver='saga',
                                            multi_class='ovr',
                                            max_iter=10000),
    'Linear SVC': SVC(kernel='linear', C=C, probability=True,
                      random_state=0),
    'GPC': GaussianProcessClassifier(kernel)
}

n_classifiers = len(classifiers)

plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)

xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]

for index, (name, classifier) in enumerate(classifiers.items()):
    classifier.fit(X, y)

    y_pred = classifier.predict(X)
    accuracy = accuracy_score(y, y_pred)
    print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))

    # View probabilities:
    probas = classifier.predict_proba(Xfull)
    n_classes = np.unique(y_pred).size
    for k in range(n_classes):
        plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
        plt.title("Class %d" % k)
        if k == 0:
            plt.ylabel(name)
        imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),
                                   extent=(3, 9, 1, 5), origin='lower')
        plt.xticks(())
        plt.yticks(())
        idx = (y_pred == k)
        if idx.any():
            plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='w', edgecolor='k')

ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')

plt.show()