File: plot_digits_last_image.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (35 lines) | stat: -rw-r--r-- 932 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/python
# -*- coding: utf-8 -*-

"""
=========================================================
The Digit Dataset
=========================================================

This dataset is made up of 1797 8x8 images. Each image,
like the one shown below, is of a hand-written digit.
In order to utilize an 8x8 figure like this, we'd have to
first transform it into a feature vector with length 64.

See `here
<http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits>`_
for more information about this dataset.
"""
print(__doc__)


# Code source: Gaƫl Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause

from sklearn import datasets

import matplotlib.pyplot as plt

#Load the digits dataset
digits = datasets.load_digits()

#Display the first digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()