1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
# -*- coding: utf-8 -*-
"""
DBSCAN: Density-Based Spatial Clustering of Applications with Noise
"""
# Author: Robert Layton <robertlayton@gmail.com>
# Joel Nothman <joel.nothman@gmail.com>
# Lars Buitinck
#
# License: BSD 3 clause
import numpy as np
from scipy import sparse
from ..base import BaseEstimator, ClusterMixin
from ..utils import check_array, check_consistent_length
from ..utils.testing import ignore_warnings
from ..neighbors import NearestNeighbors
from ._dbscan_inner import dbscan_inner
def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', metric_params=None,
algorithm='auto', leaf_size=30, p=2, sample_weight=None,
n_jobs=None):
"""Perform DBSCAN clustering from vector array or distance matrix.
Read more in the :ref:`User Guide <dbscan>`.
Parameters
----------
X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \
array of shape (n_samples, n_samples)
A feature array, or array of distances between samples if
``metric='precomputed'``.
eps : float, optional
The maximum distance between two samples for them to be considered
as in the same neighborhood.
min_samples : int, optional
The number of samples (or total weight) in a neighborhood for a point
to be considered as a core point. This includes the point itself.
metric : string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string or callable, it must be one of
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
its metric parameter.
If metric is "precomputed", X is assumed to be a distance matrix and
must be square. X may be a sparse matrix, in which case only "nonzero"
elements may be considered neighbors for DBSCAN.
metric_params : dict, optional
Additional keyword arguments for the metric function.
.. versionadded:: 0.19
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
The algorithm to be used by the NearestNeighbors module
to compute pointwise distances and find nearest neighbors.
See NearestNeighbors module documentation for details.
leaf_size : int, optional (default = 30)
Leaf size passed to BallTree or cKDTree. This can affect the speed
of the construction and query, as well as the memory required
to store the tree. The optimal value depends
on the nature of the problem.
p : float, optional
The power of the Minkowski metric to be used to calculate distance
between points.
sample_weight : array, shape (n_samples,), optional
Weight of each sample, such that a sample with a weight of at least
``min_samples`` is by itself a core sample; a sample with negative
weight may inhibit its eps-neighbor from being core.
Note that weights are absolute, and default to 1.
n_jobs : int or None, optional (default=None)
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
core_samples : array [n_core_samples]
Indices of core samples.
labels : array [n_samples]
Cluster labels for each point. Noisy samples are given the label -1.
See also
--------
DBSCAN
An estimator interface for this clustering algorithm.
Notes
-----
For an example, see :ref:`examples/cluster/plot_dbscan.py
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
This implementation bulk-computes all neighborhood queries, which increases
the memory complexity to O(n.d) where d is the average number of neighbors,
while original DBSCAN had memory complexity O(n). It may attract a higher
memory complexity when querying these nearest neighborhoods, depending
on the ``algorithm``.
One way to avoid the query complexity is to pre-compute sparse
neighborhoods in chunks using
:func:`NearestNeighbors.radius_neighbors_graph
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
``mode='distance'``, then using ``metric='precomputed'`` here.
Another way to reduce memory and computation time is to remove
(near-)duplicate points and use ``sample_weight`` instead.
References
----------
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise".
In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
"""
if not eps > 0.0:
raise ValueError("eps must be positive.")
X = check_array(X, accept_sparse='csr')
if sample_weight is not None:
sample_weight = np.asarray(sample_weight)
check_consistent_length(X, sample_weight)
# Calculate neighborhood for all samples. This leaves the original point
# in, which needs to be considered later (i.e. point i is in the
# neighborhood of point i. While True, its useless information)
if metric == 'precomputed' and sparse.issparse(X):
neighborhoods = np.empty(X.shape[0], dtype=object)
X.sum_duplicates() # XXX: modifies X's internals in-place
# set the diagonal to explicit values, as a point is its own neighbor
with ignore_warnings():
X.setdiag(X.diagonal()) # XXX: modifies X's internals in-place
X_mask = X.data <= eps
masked_indices = X.indices.astype(np.intp, copy=False)[X_mask]
masked_indptr = np.concatenate(([0], np.cumsum(X_mask)))
masked_indptr = masked_indptr[X.indptr[1:-1]]
# split into rows
neighborhoods[:] = np.split(masked_indices, masked_indptr)
else:
neighbors_model = NearestNeighbors(radius=eps, algorithm=algorithm,
leaf_size=leaf_size,
metric=metric,
metric_params=metric_params, p=p,
n_jobs=n_jobs)
neighbors_model.fit(X)
# This has worst case O(n^2) memory complexity
neighborhoods = neighbors_model.radius_neighbors(X, eps,
return_distance=False)
if sample_weight is None:
n_neighbors = np.array([len(neighbors)
for neighbors in neighborhoods])
else:
n_neighbors = np.array([np.sum(sample_weight[neighbors])
for neighbors in neighborhoods])
# Initially, all samples are noise.
labels = np.full(X.shape[0], -1, dtype=np.intp)
# A list of all core samples found.
core_samples = np.asarray(n_neighbors >= min_samples, dtype=np.uint8)
dbscan_inner(core_samples, neighborhoods, labels)
return np.where(core_samples)[0], labels
class DBSCAN(BaseEstimator, ClusterMixin):
"""Perform DBSCAN clustering from vector array or distance matrix.
DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
Finds core samples of high density and expands clusters from them.
Good for data which contains clusters of similar density.
Read more in the :ref:`User Guide <dbscan>`.
Parameters
----------
eps : float, optional
The maximum distance between two samples for them to be considered
as in the same neighborhood.
min_samples : int, optional
The number of samples (or total weight) in a neighborhood for a point
to be considered as a core point. This includes the point itself.
metric : string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string or callable, it must be one of
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
its metric parameter.
If metric is "precomputed", X is assumed to be a distance matrix and
must be square. X may be a sparse matrix, in which case only "nonzero"
elements may be considered neighbors for DBSCAN.
.. versionadded:: 0.17
metric *precomputed* to accept precomputed sparse matrix.
metric_params : dict, optional
Additional keyword arguments for the metric function.
.. versionadded:: 0.19
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
The algorithm to be used by the NearestNeighbors module
to compute pointwise distances and find nearest neighbors.
See NearestNeighbors module documentation for details.
leaf_size : int, optional (default = 30)
Leaf size passed to BallTree or cKDTree. This can affect the speed
of the construction and query, as well as the memory required
to store the tree. The optimal value depends
on the nature of the problem.
p : float, optional
The power of the Minkowski metric to be used to calculate distance
between points.
n_jobs : int or None, optional (default=None)
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
core_sample_indices_ : array, shape = [n_core_samples]
Indices of core samples.
components_ : array, shape = [n_core_samples, n_features]
Copy of each core sample found by training.
labels_ : array, shape = [n_samples]
Cluster labels for each point in the dataset given to fit().
Noisy samples are given the label -1.
Examples
--------
>>> from sklearn.cluster import DBSCAN
>>> import numpy as np
>>> X = np.array([[1, 2], [2, 2], [2, 3],
... [8, 7], [8, 8], [25, 80]])
>>> clustering = DBSCAN(eps=3, min_samples=2).fit(X)
>>> clustering.labels_
array([ 0, 0, 0, 1, 1, -1])
>>> clustering # doctest: +NORMALIZE_WHITESPACE
DBSCAN(algorithm='auto', eps=3, leaf_size=30, metric='euclidean',
metric_params=None, min_samples=2, n_jobs=None, p=None)
Notes
-----
For an example, see :ref:`examples/cluster/plot_dbscan.py
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
This implementation bulk-computes all neighborhood queries, which increases
the memory complexity to O(n.d) where d is the average number of neighbors,
while original DBSCAN had memory complexity O(n). It may attract a higher
memory complexity when querying these nearest neighborhoods, depending
on the ``algorithm``.
One way to avoid the query complexity is to pre-compute sparse
neighborhoods in chunks using
:func:`NearestNeighbors.radius_neighbors_graph
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
``mode='distance'``, then using ``metric='precomputed'`` here.
Another way to reduce memory and computation time is to remove
(near-)duplicate points and use ``sample_weight`` instead.
References
----------
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise".
In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
"""
def __init__(self, eps=0.5, min_samples=5, metric='euclidean',
metric_params=None, algorithm='auto', leaf_size=30, p=None,
n_jobs=None):
self.eps = eps
self.min_samples = min_samples
self.metric = metric
self.metric_params = metric_params
self.algorithm = algorithm
self.leaf_size = leaf_size
self.p = p
self.n_jobs = n_jobs
def fit(self, X, y=None, sample_weight=None):
"""Perform DBSCAN clustering from features or distance matrix.
Parameters
----------
X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \
array of shape (n_samples, n_samples)
A feature array, or array of distances between samples if
``metric='precomputed'``.
sample_weight : array, shape (n_samples,), optional
Weight of each sample, such that a sample with a weight of at least
``min_samples`` is by itself a core sample; a sample with negative
weight may inhibit its eps-neighbor from being core.
Note that weights are absolute, and default to 1.
y : Ignored
"""
X = check_array(X, accept_sparse='csr')
clust = dbscan(X, sample_weight=sample_weight,
**self.get_params())
self.core_sample_indices_, self.labels_ = clust
if len(self.core_sample_indices_):
# fix for scipy sparse indexing issue
self.components_ = X[self.core_sample_indices_].copy()
else:
# no core samples
self.components_ = np.empty((0, X.shape[1]))
return self
def fit_predict(self, X, y=None, sample_weight=None):
"""Performs clustering on X and returns cluster labels.
Parameters
----------
X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \
array of shape (n_samples, n_samples)
A feature array, or array of distances between samples if
``metric='precomputed'``.
sample_weight : array, shape (n_samples,), optional
Weight of each sample, such that a sample with a weight of at least
``min_samples`` is by itself a core sample; a sample with negative
weight may inhibit its eps-neighbor from being core.
Note that weights are absolute, and default to 1.
y : Ignored
Returns
-------
y : ndarray, shape (n_samples,)
cluster labels
"""
self.fit(X, sample_weight=sample_weight)
return self.labels_
|