File: hierarchical.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (969 lines) | stat: -rw-r--r-- 38,123 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
"""Hierarchical Agglomerative Clustering

These routines perform some hierarchical agglomerative clustering of some
input data.

Authors : Vincent Michel, Bertrand Thirion, Alexandre Gramfort,
          Gael Varoquaux
License: BSD 3 clause
"""
from heapq import heapify, heappop, heappush, heappushpop
import warnings

import numpy as np
from scipy import sparse
from scipy.sparse.csgraph import connected_components

from ..base import BaseEstimator, ClusterMixin
from ..externals import six
from ..metrics.pairwise import paired_distances, pairwise_distances
from ..utils import check_array
from ..utils.validation import check_memory

from . import _hierarchical
from ._feature_agglomeration import AgglomerationTransform
from ..utils.fast_dict import IntFloatDict

from ..externals.six.moves import xrange

###############################################################################
# For non fully-connected graphs


def _fix_connectivity(X, connectivity, affinity):
    """
    Fixes the connectivity matrix

        - copies it
        - makes it symmetric
        - converts it to LIL if necessary
        - completes it if necessary
    """
    n_samples = X.shape[0]
    if (connectivity.shape[0] != n_samples or
            connectivity.shape[1] != n_samples):
        raise ValueError('Wrong shape for connectivity matrix: %s '
                         'when X is %s' % (connectivity.shape, X.shape))

    # Make the connectivity matrix symmetric:
    connectivity = connectivity + connectivity.T

    # Convert connectivity matrix to LIL
    if not sparse.isspmatrix_lil(connectivity):
        if not sparse.isspmatrix(connectivity):
            connectivity = sparse.lil_matrix(connectivity)
        else:
            connectivity = connectivity.tolil()

    # Compute the number of nodes
    n_components, labels = connected_components(connectivity)

    if n_components > 1:
        warnings.warn("the number of connected components of the "
                      "connectivity matrix is %d > 1. Completing it to avoid "
                      "stopping the tree early." % n_components,
                      stacklevel=2)
        # XXX: Can we do without completing the matrix?
        for i in xrange(n_components):
            idx_i = np.where(labels == i)[0]
            Xi = X[idx_i]
            for j in xrange(i):
                idx_j = np.where(labels == j)[0]
                Xj = X[idx_j]
                D = pairwise_distances(Xi, Xj, metric=affinity)
                ii, jj = np.where(D == np.min(D))
                ii = ii[0]
                jj = jj[0]
                connectivity[idx_i[ii], idx_j[jj]] = True
                connectivity[idx_j[jj], idx_i[ii]] = True

    return connectivity, n_components


def _single_linkage_tree(connectivity, n_samples, n_nodes, n_clusters,
                         n_components, return_distance):
    """
    Perform single linkage clustering on sparse data via the minimum
    spanning tree from scipy.sparse.csgraph, then using union-find to label.
    The parent array is then generated by walking through the tree.
    """
    from scipy.sparse.csgraph import minimum_spanning_tree

    # explicitly cast connectivity to ensure safety
    connectivity = connectivity.astype('float64')

    # Ensure zero distances aren't ignored by setting them to "epsilon"
    epsilon_value = np.finfo(dtype=connectivity.data.dtype).eps
    connectivity.data[connectivity.data == 0] = epsilon_value

    # Use scipy.sparse.csgraph to generate a minimum spanning tree
    mst = minimum_spanning_tree(connectivity.tocsr())

    # Convert the graph to scipy.cluster.hierarchy array format
    mst = mst.tocoo()

    # Undo the epsilon values
    mst.data[mst.data == epsilon_value] = 0

    mst_array = np.vstack([mst.row, mst.col, mst.data]).T

    # Sort edges of the min_spanning_tree by weight
    mst_array = mst_array[np.argsort(mst_array.T[2]), :]

    # Convert edge list into standard hierarchical clustering format
    single_linkage_tree = _hierarchical._single_linkage_label(mst_array)
    children_ = single_linkage_tree[:, :2].astype(np.int)

    # Compute parents
    parent = np.arange(n_nodes, dtype=np.intp)
    for i, (left, right) in enumerate(children_, n_samples):
        if n_clusters is not None and i >= n_nodes:
            break
        if left < n_nodes:
            parent[left] = i
        if right < n_nodes:
            parent[right] = i

    if return_distance:
        distances = single_linkage_tree[:, 2]
        return children_, n_components, n_samples, parent, distances
    return children_, n_components, n_samples, parent


###############################################################################
# Hierarchical tree building functions

def ward_tree(X, connectivity=None, n_clusters=None, return_distance=False):
    """Ward clustering based on a Feature matrix.

    Recursively merges the pair of clusters that minimally increases
    within-cluster variance.

    The inertia matrix uses a Heapq-based representation.

    This is the structured version, that takes into account some topological
    structure between samples.

    Read more in the :ref:`User Guide <hierarchical_clustering>`.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        feature matrix  representing n_samples samples to be clustered

    connectivity : sparse matrix (optional).
        connectivity matrix. Defines for each sample the neighboring samples
        following a given structure of the data. The matrix is assumed to
        be symmetric and only the upper triangular half is used.
        Default is None, i.e, the Ward algorithm is unstructured.

    n_clusters : int (optional)
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of samples. In this case, the
        complete tree is not computed, thus the 'children' output is of
        limited use, and the 'parents' output should rather be used.
        This option is valid only when specifying a connectivity matrix.

    return_distance : bool (optional)
        If True, return the distance between the clusters.

    Returns
    -------
    children : 2D array, shape (n_nodes-1, 2)
        The children of each non-leaf node. Values less than `n_samples`
        correspond to leaves of the tree which are the original samples.
        A node `i` greater than or equal to `n_samples` is a non-leaf
        node and has children `children_[i - n_samples]`. Alternatively
        at the i-th iteration, children[i][0] and children[i][1]
        are merged to form node `n_samples + i`

    n_components : int
        The number of connected components in the graph.

    n_leaves : int
        The number of leaves in the tree

    parents : 1D array, shape (n_nodes, ) or None
        The parent of each node. Only returned when a connectivity matrix
        is specified, elsewhere 'None' is returned.

    distances : 1D array, shape (n_nodes-1, )
        Only returned if return_distance is set to True (for compatibility).
        The distances between the centers of the nodes. `distances[i]`
        corresponds to a weighted euclidean distance between
        the nodes `children[i, 1]` and `children[i, 2]`. If the nodes refer to
        leaves of the tree, then `distances[i]` is their unweighted euclidean
        distance. Distances are updated in the following way
        (from scipy.hierarchy.linkage):

        The new entry :math:`d(u,v)` is computed as follows,

        .. math::

           d(u,v) = \\sqrt{\\frac{|v|+|s|}
                               {T}d(v,s)^2
                        + \\frac{|v|+|t|}
                               {T}d(v,t)^2
                        - \\frac{|v|}
                               {T}d(s,t)^2}

        where :math:`u` is the newly joined cluster consisting of
        clusters :math:`s` and :math:`t`, :math:`v` is an unused
        cluster in the forest, :math:`T=|v|+|s|+|t|`, and
        :math:`|*|` is the cardinality of its argument. This is also
        known as the incremental algorithm.
    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (-1, 1))
    n_samples, n_features = X.shape

    if connectivity is None:
        from scipy.cluster import hierarchy     # imports PIL

        if n_clusters is not None:
            warnings.warn('Partial build of the tree is implemented '
                          'only for structured clustering (i.e. with '
                          'explicit connectivity). The algorithm '
                          'will build the full tree and only '
                          'retain the lower branches required '
                          'for the specified number of clusters',
                          stacklevel=2)
        X = np.require(X, requirements="W")
        out = hierarchy.ward(X)
        children_ = out[:, :2].astype(np.intp)

        if return_distance:
            distances = out[:, 2]
            return children_, 1, n_samples, None, distances
        else:
            return children_, 1, n_samples, None

    connectivity, n_components = _fix_connectivity(X, connectivity,
                                                   affinity='euclidean')
    if n_clusters is None:
        n_nodes = 2 * n_samples - 1
    else:
        if n_clusters > n_samples:
            raise ValueError('Cannot provide more clusters than samples. '
                             '%i n_clusters was asked, and there are %i samples.'
                             % (n_clusters, n_samples))
        n_nodes = 2 * n_samples - n_clusters

    # create inertia matrix
    coord_row = []
    coord_col = []
    A = []
    for ind, row in enumerate(connectivity.rows):
        A.append(row)
        # We keep only the upper triangular for the moments
        # Generator expressions are faster than arrays on the following
        row = [i for i in row if i < ind]
        coord_row.extend(len(row) * [ind, ])
        coord_col.extend(row)

    coord_row = np.array(coord_row, dtype=np.intp, order='C')
    coord_col = np.array(coord_col, dtype=np.intp, order='C')

    # build moments as a list
    moments_1 = np.zeros(n_nodes, order='C')
    moments_1[:n_samples] = 1
    moments_2 = np.zeros((n_nodes, n_features), order='C')
    moments_2[:n_samples] = X
    inertia = np.empty(len(coord_row), dtype=np.float64, order='C')
    _hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col,
                                    inertia)
    inertia = list(six.moves.zip(inertia, coord_row, coord_col))
    heapify(inertia)

    # prepare the main fields
    parent = np.arange(n_nodes, dtype=np.intp)
    used_node = np.ones(n_nodes, dtype=bool)
    children = []
    if return_distance:
        distances = np.empty(n_nodes - n_samples)

    not_visited = np.empty(n_nodes, dtype=np.int8, order='C')

    # recursive merge loop
    for k in range(n_samples, n_nodes):
        # identify the merge
        while True:
            inert, i, j = heappop(inertia)
            if used_node[i] and used_node[j]:
                break
        parent[i], parent[j] = k, k
        children.append((i, j))
        used_node[i] = used_node[j] = False
        if return_distance:  # store inertia value
            distances[k - n_samples] = inert

        # update the moments
        moments_1[k] = moments_1[i] + moments_1[j]
        moments_2[k] = moments_2[i] + moments_2[j]

        # update the structure matrix A and the inertia matrix
        coord_col = []
        not_visited.fill(1)
        not_visited[k] = 0
        _hierarchical._get_parents(A[i], coord_col, parent, not_visited)
        _hierarchical._get_parents(A[j], coord_col, parent, not_visited)
        # List comprehension is faster than a for loop
        [A[l].append(k) for l in coord_col]
        A.append(coord_col)
        coord_col = np.array(coord_col, dtype=np.intp, order='C')
        coord_row = np.empty(coord_col.shape, dtype=np.intp, order='C')
        coord_row.fill(k)
        n_additions = len(coord_row)
        ini = np.empty(n_additions, dtype=np.float64, order='C')

        _hierarchical.compute_ward_dist(moments_1, moments_2,
                                        coord_row, coord_col, ini)

        # List comprehension is faster than a for loop
        [heappush(inertia, (ini[idx], k, coord_col[idx]))
            for idx in range(n_additions)]

    # Separate leaves in children (empty lists up to now)
    n_leaves = n_samples
    # sort children to get consistent output with unstructured version
    children = [c[::-1] for c in children]
    children = np.array(children)  # return numpy array for efficient caching

    if return_distance:
        # 2 is scaling factor to compare w/ unstructured version
        distances = np.sqrt(2. * distances)
        return children, n_components, n_leaves, parent, distances
    else:
        return children, n_components, n_leaves, parent


# single average and complete linkage
def linkage_tree(X, connectivity=None, n_components='deprecated',
                 n_clusters=None, linkage='complete', affinity="euclidean",
                 return_distance=False):
    """Linkage agglomerative clustering based on a Feature matrix.

    The inertia matrix uses a Heapq-based representation.

    This is the structured version, that takes into account some topological
    structure between samples.

    Read more in the :ref:`User Guide <hierarchical_clustering>`.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        feature matrix representing n_samples samples to be clustered

    connectivity : sparse matrix (optional).
        connectivity matrix. Defines for each sample the neighboring samples
        following a given structure of the data. The matrix is assumed to
        be symmetric and only the upper triangular half is used.
        Default is None, i.e, the Ward algorithm is unstructured.

    n_components : int (optional)
        The number of connected components in the graph.

    n_clusters : int (optional)
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of samples. In this case, the
        complete tree is not computed, thus the 'children' output is of
        limited use, and the 'parents' output should rather be used.
        This option is valid only when specifying a connectivity matrix.

    linkage : {"average", "complete", "single"}, optional, default: "complete"
        Which linkage criteria to use. The linkage criterion determines which
        distance to use between sets of observation.
            - average uses the average of the distances of each observation of
              the two sets
            - complete or maximum linkage uses the maximum distances between
              all observations of the two sets.
            - single uses the minimum of the distances between all observations
              of the two sets.

    affinity : string or callable, optional, default: "euclidean".
        which metric to use. Can be "euclidean", "manhattan", or any
        distance know to paired distance (see metric.pairwise)

    return_distance : bool, default False
        whether or not to return the distances between the clusters.

    Returns
    -------
    children : 2D array, shape (n_nodes-1, 2)
        The children of each non-leaf node. Values less than `n_samples`
        correspond to leaves of the tree which are the original samples.
        A node `i` greater than or equal to `n_samples` is a non-leaf
        node and has children `children_[i - n_samples]`. Alternatively
        at the i-th iteration, children[i][0] and children[i][1]
        are merged to form node `n_samples + i`

    n_components : int
        The number of connected components in the graph.

    n_leaves : int
        The number of leaves in the tree.

    parents : 1D array, shape (n_nodes, ) or None
        The parent of each node. Only returned when a connectivity matrix
        is specified, elsewhere 'None' is returned.

    distances : ndarray, shape (n_nodes-1,)
        Returned when return_distance is set to True.

        distances[i] refers to the distance between children[i][0] and
        children[i][1] when they are merged.

    See also
    --------
    ward_tree : hierarchical clustering with ward linkage
    """
    if n_components != 'deprecated':
        warnings.warn("n_components was deprecated in 0.19"
                      "will be removed in 0.21", DeprecationWarning)

    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (-1, 1))
    n_samples, n_features = X.shape

    linkage_choices = {'complete': _hierarchical.max_merge,
                       'average': _hierarchical.average_merge,
                       'single': None}  # Single linkage is handled differently
    try:
        join_func = linkage_choices[linkage]
    except KeyError:
        raise ValueError(
            'Unknown linkage option, linkage should be one '
            'of %s, but %s was given' % (linkage_choices.keys(), linkage))

    if connectivity is None:
        from scipy.cluster import hierarchy     # imports PIL

        if n_clusters is not None:
            warnings.warn('Partial build of the tree is implemented '
                          'only for structured clustering (i.e. with '
                          'explicit connectivity). The algorithm '
                          'will build the full tree and only '
                          'retain the lower branches required '
                          'for the specified number of clusters',
                          stacklevel=2)

        if affinity == 'precomputed':
            # for the linkage function of hierarchy to work on precomputed
            # data, provide as first argument an ndarray of the shape returned
            # by pdist: it is a flat array containing the upper triangular of
            # the distance matrix.
            i, j = np.triu_indices(X.shape[0], k=1)
            X = X[i, j]
        elif affinity == 'l2':
            # Translate to something understood by scipy
            affinity = 'euclidean'
        elif affinity in ('l1', 'manhattan'):
            affinity = 'cityblock'
        elif callable(affinity):
            X = affinity(X)
            i, j = np.triu_indices(X.shape[0], k=1)
            X = X[i, j]
        out = hierarchy.linkage(X, method=linkage, metric=affinity)
        children_ = out[:, :2].astype(np.int)

        if return_distance:
            distances = out[:, 2]
            return children_, 1, n_samples, None, distances
        return children_, 1, n_samples, None

    connectivity, n_components = _fix_connectivity(X, connectivity,
                                                   affinity=affinity)

    connectivity = connectivity.tocoo()
    # Put the diagonal to zero
    diag_mask = (connectivity.row != connectivity.col)
    connectivity.row = connectivity.row[diag_mask]
    connectivity.col = connectivity.col[diag_mask]
    connectivity.data = connectivity.data[diag_mask]
    del diag_mask

    if affinity == 'precomputed':
        distances = X[connectivity.row, connectivity.col].astype('float64')
    else:
        # FIXME We compute all the distances, while we could have only computed
        # the "interesting" distances
        distances = paired_distances(X[connectivity.row],
                                     X[connectivity.col],
                                     metric=affinity)
    connectivity.data = distances

    if n_clusters is None:
        n_nodes = 2 * n_samples - 1
    else:
        assert n_clusters <= n_samples
        n_nodes = 2 * n_samples - n_clusters

    if linkage == 'single':
        return _single_linkage_tree(connectivity, n_samples, n_nodes,
                                    n_clusters, n_components, return_distance)

    if return_distance:
        distances = np.empty(n_nodes - n_samples)
    # create inertia heap and connection matrix
    A = np.empty(n_nodes, dtype=object)
    inertia = list()

    # LIL seems to the best format to access the rows quickly,
    # without the numpy overhead of slicing CSR indices and data.
    connectivity = connectivity.tolil()
    # We are storing the graph in a list of IntFloatDict
    for ind, (data, row) in enumerate(zip(connectivity.data,
                                          connectivity.rows)):
        A[ind] = IntFloatDict(np.asarray(row, dtype=np.intp),
                              np.asarray(data, dtype=np.float64))
        # We keep only the upper triangular for the heap
        # Generator expressions are faster than arrays on the following
        inertia.extend(_hierarchical.WeightedEdge(d, ind, r)
                       for r, d in zip(row, data) if r < ind)
    del connectivity

    heapify(inertia)

    # prepare the main fields
    parent = np.arange(n_nodes, dtype=np.intp)
    used_node = np.ones(n_nodes, dtype=np.intp)
    children = []

    # recursive merge loop
    for k in xrange(n_samples, n_nodes):
        # identify the merge
        while True:
            edge = heappop(inertia)
            if used_node[edge.a] and used_node[edge.b]:
                break
        i = edge.a
        j = edge.b

        if return_distance:
            # store distances
            distances[k - n_samples] = edge.weight

        parent[i] = parent[j] = k
        children.append((i, j))
        # Keep track of the number of elements per cluster
        n_i = used_node[i]
        n_j = used_node[j]
        used_node[k] = n_i + n_j
        used_node[i] = used_node[j] = False

        # update the structure matrix A and the inertia matrix
        # a clever 'min', or 'max' operation between A[i] and A[j]
        coord_col = join_func(A[i], A[j], used_node, n_i, n_j)
        for l, d in coord_col:
            A[l].append(k, d)
            # Here we use the information from coord_col (containing the
            # distances) to update the heap
            heappush(inertia, _hierarchical.WeightedEdge(d, k, l))
        A[k] = coord_col
        # Clear A[i] and A[j] to save memory
        A[i] = A[j] = 0

    # Separate leaves in children (empty lists up to now)
    n_leaves = n_samples

    # # return numpy array for efficient caching
    children = np.array(children)[:, ::-1]

    if return_distance:
        return children, n_components, n_leaves, parent, distances
    return children, n_components, n_leaves, parent


# Matching names to tree-building strategies
def _complete_linkage(*args, **kwargs):
    kwargs['linkage'] = 'complete'
    return linkage_tree(*args, **kwargs)


def _average_linkage(*args, **kwargs):
    kwargs['linkage'] = 'average'
    return linkage_tree(*args, **kwargs)


def _single_linkage(*args, **kwargs):
    kwargs['linkage'] = 'single'
    return linkage_tree(*args, **kwargs)


_TREE_BUILDERS = dict(
    ward=ward_tree,
    complete=_complete_linkage,
    average=_average_linkage,
    single=_single_linkage)


###############################################################################
# Functions for cutting  hierarchical clustering tree

def _hc_cut(n_clusters, children, n_leaves):
    """Function cutting the ward tree for a given number of clusters.

    Parameters
    ----------
    n_clusters : int or ndarray
        The number of clusters to form.

    children : 2D array, shape (n_nodes-1, 2)
        The children of each non-leaf node. Values less than `n_samples`
        correspond to leaves of the tree which are the original samples.
        A node `i` greater than or equal to `n_samples` is a non-leaf
        node and has children `children_[i - n_samples]`. Alternatively
        at the i-th iteration, children[i][0] and children[i][1]
        are merged to form node `n_samples + i`

    n_leaves : int
        Number of leaves of the tree.

    Returns
    -------
    labels : array [n_samples]
        cluster labels for each point

    """
    if n_clusters > n_leaves:
        raise ValueError('Cannot extract more clusters than samples: '
                         '%s clusters where given for a tree with %s leaves.'
                         % (n_clusters, n_leaves))
    # In this function, we store nodes as a heap to avoid recomputing
    # the max of the nodes: the first element is always the smallest
    # We use negated indices as heaps work on smallest elements, and we
    # are interested in largest elements
    # children[-1] is the root of the tree
    nodes = [-(max(children[-1]) + 1)]
    for i in xrange(n_clusters - 1):
        # As we have a heap, nodes[0] is the smallest element
        these_children = children[-nodes[0] - n_leaves]
        # Insert the 2 children and remove the largest node
        heappush(nodes, -these_children[0])
        heappushpop(nodes, -these_children[1])
    label = np.zeros(n_leaves, dtype=np.intp)
    for i, node in enumerate(nodes):
        label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i
    return label


###############################################################################

class AgglomerativeClustering(BaseEstimator, ClusterMixin):
    """
    Agglomerative Clustering

    Recursively merges the pair of clusters that minimally increases
    a given linkage distance.

    Read more in the :ref:`User Guide <hierarchical_clustering>`.

    Parameters
    ----------
    n_clusters : int, default=2
        The number of clusters to find.

    affinity : string or callable, default: "euclidean"
        Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
        "manhattan", "cosine", or 'precomputed'.
        If linkage is "ward", only "euclidean" is accepted.

    memory : None, str or object with the joblib.Memory interface, optional
        Used to cache the output of the computation of the tree.
        By default, no caching is done. If a string is given, it is the
        path to the caching directory.

    connectivity : array-like or callable, optional
        Connectivity matrix. Defines for each sample the neighboring
        samples following a given structure of the data.
        This can be a connectivity matrix itself or a callable that transforms
        the data into a connectivity matrix, such as derived from
        kneighbors_graph. Default is None, i.e, the
        hierarchical clustering algorithm is unstructured.

    compute_full_tree : bool or 'auto' (optional)
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of samples. This option is
        useful only when specifying a connectivity matrix. Note also that
        when varying the number of clusters and using caching, it may
        be advantageous to compute the full tree.

    linkage : {"ward", "complete", "average", "single"}, optional \
            (default="ward")
        Which linkage criterion to use. The linkage criterion determines which
        distance to use between sets of observation. The algorithm will merge
        the pairs of cluster that minimize this criterion.

        - ward minimizes the variance of the clusters being merged.
        - average uses the average of the distances of each observation of
          the two sets.
        - complete or maximum linkage uses the maximum distances between
          all observations of the two sets.
        - single uses the minimum of the distances between all observations
          of the two sets.

    pooling_func : callable, default='deprecated'
        Ignored.

        .. deprecated:: 0.20
            ``pooling_func`` has been deprecated in 0.20 and will be removed
            in 0.22.

    Attributes
    ----------
    labels_ : array [n_samples]
        cluster labels for each point

    n_leaves_ : int
        Number of leaves in the hierarchical tree.

    n_components_ : int
        The estimated number of connected components in the graph.

    children_ : array-like, shape (n_samples-1, 2)
        The children of each non-leaf node. Values less than `n_samples`
        correspond to leaves of the tree which are the original samples.
        A node `i` greater than or equal to `n_samples` is a non-leaf
        node and has children `children_[i - n_samples]`. Alternatively
        at the i-th iteration, children[i][0] and children[i][1]
        are merged to form node `n_samples + i`

    Examples
    --------
    >>> from sklearn.cluster import AgglomerativeClustering
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [4, 2], [4, 4], [4, 0]])
    >>> clustering = AgglomerativeClustering().fit(X)
    >>> clustering # doctest: +NORMALIZE_WHITESPACE
    AgglomerativeClustering(affinity='euclidean', compute_full_tree='auto',
                connectivity=None, linkage='ward', memory=None, n_clusters=2,
                pooling_func='deprecated')
    >>> clustering.labels_
    array([1, 1, 1, 0, 0, 0])

    """

    def __init__(self, n_clusters=2, affinity="euclidean",
                 memory=None,
                 connectivity=None, compute_full_tree='auto',
                 linkage='ward', pooling_func='deprecated'):
        self.n_clusters = n_clusters
        self.memory = memory
        self.connectivity = connectivity
        self.compute_full_tree = compute_full_tree
        self.linkage = linkage
        self.affinity = affinity
        self.pooling_func = pooling_func

    def fit(self, X, y=None):
        """Fit the hierarchical clustering on the data

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data. Shape [n_samples, n_features], or [n_samples,
            n_samples] if affinity=='precomputed'.

        y : Ignored

        Returns
        -------
        self
        """
        if (self.pooling_func != 'deprecated' and
                not isinstance(self, AgglomerationTransform)):
            warnings.warn('Agglomerative "pooling_func" parameter is not used.'
                          ' It has been deprecated in version 0.20 and will be'
                          'removed in 0.22', DeprecationWarning)
        X = check_array(X, ensure_min_samples=2, estimator=self)
        memory = check_memory(self.memory)

        if self.n_clusters <= 0:
            raise ValueError("n_clusters should be an integer greater than 0."
                             " %s was provided." % str(self.n_clusters))

        if self.linkage == "ward" and self.affinity != "euclidean":
            raise ValueError("%s was provided as affinity. Ward can only "
                             "work with euclidean distances." %
                             (self.affinity, ))

        if self.linkage not in _TREE_BUILDERS:
            raise ValueError("Unknown linkage type %s. "
                             "Valid options are %s" % (self.linkage,
                                                       _TREE_BUILDERS.keys()))
        tree_builder = _TREE_BUILDERS[self.linkage]

        connectivity = self.connectivity
        if self.connectivity is not None:
            if callable(self.connectivity):
                connectivity = self.connectivity(X)
            connectivity = check_array(
                connectivity, accept_sparse=['csr', 'coo', 'lil'])

        n_samples = len(X)
        compute_full_tree = self.compute_full_tree
        if self.connectivity is None:
            compute_full_tree = True
        if compute_full_tree == 'auto':
            # Early stopping is likely to give a speed up only for
            # a large number of clusters. The actual threshold
            # implemented here is heuristic
            compute_full_tree = self.n_clusters < max(100, .02 * n_samples)
        n_clusters = self.n_clusters
        if compute_full_tree:
            n_clusters = None

        # Construct the tree
        kwargs = {}
        if self.linkage != 'ward':
            kwargs['linkage'] = self.linkage
            kwargs['affinity'] = self.affinity
        self.children_, self.n_components_, self.n_leaves_, parents = \
            memory.cache(tree_builder)(X, connectivity,
                                       n_clusters=n_clusters,
                                       **kwargs)
        # Cut the tree
        if compute_full_tree:
            self.labels_ = _hc_cut(self.n_clusters, self.children_,
                                   self.n_leaves_)
        else:
            labels = _hierarchical.hc_get_heads(parents, copy=False)
            # copy to avoid holding a reference on the original array
            labels = np.copy(labels[:n_samples])
            # Reassign cluster numbers
            self.labels_ = np.searchsorted(np.unique(labels), labels)
        return self


class FeatureAgglomeration(AgglomerativeClustering, AgglomerationTransform):
    """Agglomerate features.

    Similar to AgglomerativeClustering, but recursively merges features
    instead of samples.

    Read more in the :ref:`User Guide <hierarchical_clustering>`.

    Parameters
    ----------
    n_clusters : int, default 2
        The number of clusters to find.

    affinity : string or callable, default "euclidean"
        Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
        "manhattan", "cosine", or 'precomputed'.
        If linkage is "ward", only "euclidean" is accepted.

    memory : None, str or object with the joblib.Memory interface, optional
        Used to cache the output of the computation of the tree.
        By default, no caching is done. If a string is given, it is the
        path to the caching directory.

    connectivity : array-like or callable, optional
        Connectivity matrix. Defines for each feature the neighboring
        features following a given structure of the data.
        This can be a connectivity matrix itself or a callable that transforms
        the data into a connectivity matrix, such as derived from
        kneighbors_graph. Default is None, i.e, the
        hierarchical clustering algorithm is unstructured.

    compute_full_tree : bool or 'auto', optional, default "auto"
        Stop early the construction of the tree at n_clusters. This is
        useful to decrease computation time if the number of clusters is
        not small compared to the number of features. This option is
        useful only when specifying a connectivity matrix. Note also that
        when varying the number of clusters and using caching, it may
        be advantageous to compute the full tree.

    linkage : {"ward", "complete", "average", "single"}, optional\
            (default="ward")
        Which linkage criterion to use. The linkage criterion determines which
        distance to use between sets of features. The algorithm will merge
        the pairs of cluster that minimize this criterion.

        - ward minimizes the variance of the clusters being merged.
        - average uses the average of the distances of each feature of
          the two sets.
        - complete or maximum linkage uses the maximum distances between
          all features of the two sets.
        - single uses the minimum of the distances between all observations
          of the two sets.

    pooling_func : callable, default np.mean
        This combines the values of agglomerated features into a single
        value, and should accept an array of shape [M, N] and the keyword
        argument `axis=1`, and reduce it to an array of size [M].

    Attributes
    ----------
    labels_ : array-like, (n_features,)
        cluster labels for each feature.

    n_leaves_ : int
        Number of leaves in the hierarchical tree.

    n_components_ : int
        The estimated number of connected components in the graph.

    children_ : array-like, shape (n_nodes-1, 2)
        The children of each non-leaf node. Values less than `n_features`
        correspond to leaves of the tree which are the original samples.
        A node `i` greater than or equal to `n_features` is a non-leaf
        node and has children `children_[i - n_features]`. Alternatively
        at the i-th iteration, children[i][0] and children[i][1]
        are merged to form node `n_features + i`

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import datasets, cluster
    >>> digits = datasets.load_digits()
    >>> images = digits.images
    >>> X = np.reshape(images, (len(images), -1))
    >>> agglo = cluster.FeatureAgglomeration(n_clusters=32)
    >>> agglo.fit(X) # doctest: +ELLIPSIS
    FeatureAgglomeration(affinity='euclidean', compute_full_tree='auto',
               connectivity=None, linkage='ward', memory=None, n_clusters=32,
               pooling_func=...)
    >>> X_reduced = agglo.transform(X)
    >>> X_reduced.shape
    (1797, 32)
    """

    def __init__(self, n_clusters=2, affinity="euclidean",
                 memory=None,
                 connectivity=None, compute_full_tree='auto',
                 linkage='ward', pooling_func=np.mean):
        super(FeatureAgglomeration, self).__init__(
            n_clusters=n_clusters, memory=memory, connectivity=connectivity,
            compute_full_tree=compute_full_tree, linkage=linkage,
            affinity=affinity)
        self.pooling_func = pooling_func

    def fit(self, X, y=None, **params):
        """Fit the hierarchical clustering on the data

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            The data

        y : Ignored

        Returns
        -------
        self
        """
        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
                        ensure_min_features=2, estimator=self)
        return AgglomerativeClustering.fit(self, X.T, **params)

    @property
    def fit_predict(self):
        raise AttributeError