1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
|
"""K-means clustering"""
# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Thomas Rueckstiess <ruecksti@in.tum.de>
# James Bergstra <james.bergstra@umontreal.ca>
# Jan Schlueter <scikit-learn@jan-schlueter.de>
# Nelle Varoquaux
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Robert Layton <robertlayton@gmail.com>
# License: BSD 3 clause
from __future__ import division
import warnings
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, ClusterMixin, TransformerMixin
from ..metrics.pairwise import euclidean_distances
from ..metrics.pairwise import pairwise_distances_argmin_min
from ..utils.extmath import row_norms, squared_norm, stable_cumsum
from ..utils.sparsefuncs_fast import assign_rows_csr
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.validation import _num_samples
from ..utils import check_array
from ..utils import gen_batches
from ..utils import check_random_state
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..utils._joblib import Parallel
from ..utils._joblib import delayed
from ..utils._joblib import effective_n_jobs
from ..externals.six import string_types
from ..exceptions import ConvergenceWarning
from . import _k_means
from ._k_means_elkan import k_means_elkan
###############################################################################
# Initialization heuristic
def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
"""Init n_clusters seeds according to k-means++
Parameters
-----------
X : array or sparse matrix, shape (n_samples, n_features)
The data to pick seeds for. To avoid memory copy, the input data
should be double precision (dtype=np.float64).
n_clusters : integer
The number of seeds to choose
x_squared_norms : array, shape (n_samples,)
Squared Euclidean norm of each data point.
random_state : int, RandomState instance
The generator used to initialize the centers. Use an int to make the
randomness deterministic.
See :term:`Glossary <random_state>`.
n_local_trials : integer, optional
The number of seeding trials for each center (except the first),
of which the one reducing inertia the most is greedily chosen.
Set to None to make the number of trials depend logarithmically
on the number of seeds (2+log(k)); this is the default.
Notes
-----
Selects initial cluster centers for k-mean clustering in a smart way
to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
"k-means++: the advantages of careful seeding". ACM-SIAM symposium
on Discrete algorithms. 2007
Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
which is the implementation used in the aforementioned paper.
"""
n_samples, n_features = X.shape
centers = np.empty((n_clusters, n_features), dtype=X.dtype)
assert x_squared_norms is not None, 'x_squared_norms None in _k_init'
# Set the number of local seeding trials if none is given
if n_local_trials is None:
# This is what Arthur/Vassilvitskii tried, but did not report
# specific results for other than mentioning in the conclusion
# that it helped.
n_local_trials = 2 + int(np.log(n_clusters))
# Pick first center randomly
center_id = random_state.randint(n_samples)
if sp.issparse(X):
centers[0] = X[center_id].toarray()
else:
centers[0] = X[center_id]
# Initialize list of closest distances and calculate current potential
closest_dist_sq = euclidean_distances(
centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms,
squared=True)
current_pot = closest_dist_sq.sum()
# Pick the remaining n_clusters-1 points
for c in range(1, n_clusters):
# Choose center candidates by sampling with probability proportional
# to the squared distance to the closest existing center
rand_vals = random_state.random_sample(n_local_trials) * current_pot
candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq),
rand_vals)
# Compute distances to center candidates
distance_to_candidates = euclidean_distances(
X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True)
# Decide which candidate is the best
best_candidate = None
best_pot = None
best_dist_sq = None
for trial in range(n_local_trials):
# Compute potential when including center candidate
new_dist_sq = np.minimum(closest_dist_sq,
distance_to_candidates[trial])
new_pot = new_dist_sq.sum()
# Store result if it is the best local trial so far
if (best_candidate is None) or (new_pot < best_pot):
best_candidate = candidate_ids[trial]
best_pot = new_pot
best_dist_sq = new_dist_sq
# Permanently add best center candidate found in local tries
if sp.issparse(X):
centers[c] = X[best_candidate].toarray()
else:
centers[c] = X[best_candidate]
current_pot = best_pot
closest_dist_sq = best_dist_sq
return centers
###############################################################################
# K-means batch estimation by EM (expectation maximization)
def _validate_center_shape(X, n_centers, centers):
"""Check if centers is compatible with X and n_centers"""
if len(centers) != n_centers:
raise ValueError('The shape of the initial centers (%s) '
'does not match the number of clusters %i'
% (centers.shape, n_centers))
if centers.shape[1] != X.shape[1]:
raise ValueError(
"The number of features of the initial centers %s "
"does not match the number of features of the data %s."
% (centers.shape[1], X.shape[1]))
def _tolerance(X, tol):
"""Return a tolerance which is independent of the dataset"""
if sp.issparse(X):
variances = mean_variance_axis(X, axis=0)[1]
else:
variances = np.var(X, axis=0)
return np.mean(variances) * tol
def _check_sample_weight(X, sample_weight):
"""Set sample_weight if None, and check for correct dtype"""
n_samples = X.shape[0]
if sample_weight is None:
return np.ones(n_samples, dtype=X.dtype)
else:
sample_weight = np.asarray(sample_weight)
if n_samples != len(sample_weight):
raise ValueError("n_samples=%d should be == len(sample_weight)=%d"
% (n_samples, len(sample_weight)))
# normalize the weights to sum up to n_samples
scale = n_samples / sample_weight.sum()
return (sample_weight * scale).astype(X.dtype)
def k_means(X, n_clusters, sample_weight=None, init='k-means++',
precompute_distances='auto', n_init=10, max_iter=300,
verbose=False, tol=1e-4, random_state=None, copy_x=True,
n_jobs=None, algorithm="auto", return_n_iter=False):
"""K-means clustering algorithm.
Read more in the :ref:`User Guide <k_means>`.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
The observations to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory copy
if the given data is not C-contiguous.
n_clusters : int
The number of clusters to form as well as the number of
centroids to generate.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
init : {'k-means++', 'random', or ndarray, or a callable}, optional
Method for initialization, default to 'k-means++':
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose k observations (rows) at random from data for
the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
If a callable is passed, it should take arguments X, k and
and a random state and return an initialization.
precompute_distances : {'auto', True, False}
Precompute distances (faster but takes more memory).
'auto' : do not precompute distances if n_samples * n_clusters > 12
million. This corresponds to about 100MB overhead per job using
double precision.
True : always precompute distances
False : never precompute distances
n_init : int, optional, default: 10
Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of
n_init consecutive runs in terms of inertia.
max_iter : int, optional, default 300
Maximum number of iterations of the k-means algorithm to run.
verbose : boolean, optional
Verbosity mode.
tol : float, optional
The relative increment in the results before declaring convergence.
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
copy_x : boolean, optional
When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified, ensuring X is C-contiguous. If False, the original data
is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding
the data mean, in this case it will also not ensure that data is
C-contiguous which may cause a significant slowdown.
n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation. This works by computing
each of the n_init runs in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
algorithm : "auto", "full" or "elkan", default="auto"
K-means algorithm to use. The classical EM-style algorithm is "full".
The "elkan" variation is more efficient by using the triangle
inequality, but currently doesn't support sparse data. "auto" chooses
"elkan" for dense data and "full" for sparse data.
return_n_iter : bool, optional
Whether or not to return the number of iterations.
Returns
-------
centroid : float ndarray with shape (k, n_features)
Centroids found at the last iteration of k-means.
label : integer ndarray with shape (n_samples,)
label[i] is the code or index of the centroid the
i'th observation is closest to.
inertia : float
The final value of the inertia criterion (sum of squared distances to
the closest centroid for all observations in the training set).
best_n_iter : int
Number of iterations corresponding to the best results.
Returned only if `return_n_iter` is set to True.
"""
if n_init <= 0:
raise ValueError("Invalid number of initializations."
" n_init=%d must be bigger than zero." % n_init)
random_state = check_random_state(random_state)
if max_iter <= 0:
raise ValueError('Number of iterations should be a positive number,'
' got %d instead' % max_iter)
# avoid forcing order when copy_x=False
order = "C" if copy_x else None
X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32],
order=order, copy=copy_x)
# verify that the number of samples given is larger than k
if _num_samples(X) < n_clusters:
raise ValueError("n_samples=%d should be >= n_clusters=%d" % (
_num_samples(X), n_clusters))
tol = _tolerance(X, tol)
# If the distances are precomputed every job will create a matrix of shape
# (n_clusters, n_samples). To stop KMeans from eating up memory we only
# activate this if the created matrix is guaranteed to be under 100MB. 12
# million entries consume a little under 100MB if they are of type double.
if precompute_distances == 'auto':
n_samples = X.shape[0]
precompute_distances = (n_clusters * n_samples) < 12e6
elif isinstance(precompute_distances, bool):
pass
else:
raise ValueError("precompute_distances should be 'auto' or True/False"
", but a value of %r was passed" %
precompute_distances)
# Validate init array
if hasattr(init, '__array__'):
init = check_array(init, dtype=X.dtype.type, copy=True)
_validate_center_shape(X, n_clusters, init)
if n_init != 1:
warnings.warn(
'Explicit initial center position passed: '
'performing only one init in k-means instead of n_init=%d'
% n_init, RuntimeWarning, stacklevel=2)
n_init = 1
# subtract of mean of x for more accurate distance computations
if not sp.issparse(X):
X_mean = X.mean(axis=0)
# The copy was already done above
X -= X_mean
if hasattr(init, '__array__'):
init -= X_mean
# precompute squared norms of data points
x_squared_norms = row_norms(X, squared=True)
best_labels, best_inertia, best_centers = None, None, None
if n_clusters == 1:
# elkan doesn't make sense for a single cluster, full will produce
# the right result.
algorithm = "full"
if algorithm == "auto":
algorithm = "full" if sp.issparse(X) else 'elkan'
if algorithm == "full":
kmeans_single = _kmeans_single_lloyd
elif algorithm == "elkan":
kmeans_single = _kmeans_single_elkan
else:
raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got"
" %s" % str(algorithm))
if effective_n_jobs(n_jobs):
# For a single thread, less memory is needed if we just store one set
# of the best results (as opposed to one set per run per thread).
for it in range(n_init):
# run a k-means once
labels, inertia, centers, n_iter_ = kmeans_single(
X, sample_weight, n_clusters, max_iter=max_iter, init=init,
verbose=verbose, precompute_distances=precompute_distances,
tol=tol, x_squared_norms=x_squared_norms,
random_state=random_state)
# determine if these results are the best so far
if best_inertia is None or inertia < best_inertia:
best_labels = labels.copy()
best_centers = centers.copy()
best_inertia = inertia
best_n_iter = n_iter_
else:
# parallelisation of k-means runs
seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
results = Parallel(n_jobs=n_jobs, verbose=0)(
delayed(kmeans_single)(X, sample_weight, n_clusters,
max_iter=max_iter, init=init,
verbose=verbose, tol=tol,
precompute_distances=precompute_distances,
x_squared_norms=x_squared_norms,
# Change seed to ensure variety
random_state=seed)
for seed in seeds)
# Get results with the lowest inertia
labels, inertia, centers, n_iters = zip(*results)
best = np.argmin(inertia)
best_labels = labels[best]
best_inertia = inertia[best]
best_centers = centers[best]
best_n_iter = n_iters[best]
if not sp.issparse(X):
if not copy_x:
X += X_mean
best_centers += X_mean
distinct_clusters = len(set(best_labels))
if distinct_clusters < n_clusters:
warnings.warn("Number of distinct clusters ({}) found smaller than "
"n_clusters ({}). Possibly due to duplicate points "
"in X.".format(distinct_clusters, n_clusters),
ConvergenceWarning, stacklevel=2)
if return_n_iter:
return best_centers, best_labels, best_inertia, best_n_iter
else:
return best_centers, best_labels, best_inertia
def _kmeans_single_elkan(X, sample_weight, n_clusters, max_iter=300,
init='k-means++', verbose=False, x_squared_norms=None,
random_state=None, tol=1e-4,
precompute_distances=True):
if sp.issparse(X):
raise TypeError("algorithm='elkan' not supported for sparse input X")
random_state = check_random_state(random_state)
if x_squared_norms is None:
x_squared_norms = row_norms(X, squared=True)
# init
centers = _init_centroids(X, n_clusters, init, random_state=random_state,
x_squared_norms=x_squared_norms)
centers = np.ascontiguousarray(centers)
if verbose:
print('Initialization complete')
checked_sample_weight = _check_sample_weight(X, sample_weight)
centers, labels, n_iter = k_means_elkan(X, checked_sample_weight,
n_clusters, centers, tol=tol,
max_iter=max_iter, verbose=verbose)
if sample_weight is None:
inertia = np.sum((X - centers[labels]) ** 2, dtype=np.float64)
else:
sq_distances = np.sum((X - centers[labels]) ** 2, axis=1,
dtype=np.float64) * checked_sample_weight
inertia = np.sum(sq_distances, dtype=np.float64)
return labels, inertia, centers, n_iter
def _kmeans_single_lloyd(X, sample_weight, n_clusters, max_iter=300,
init='k-means++', verbose=False, x_squared_norms=None,
random_state=None, tol=1e-4,
precompute_distances=True):
"""A single run of k-means, assumes preparation completed prior.
Parameters
----------
X : array-like of floats, shape (n_samples, n_features)
The observations to cluster.
n_clusters : int
The number of clusters to form as well as the number of
centroids to generate.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
max_iter : int, optional, default 300
Maximum number of iterations of the k-means algorithm to run.
init : {'k-means++', 'random', or ndarray, or a callable}, optional
Method for initialization, default to 'k-means++':
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose k observations (rows) at random from data for
the initial centroids.
If an ndarray is passed, it should be of shape (k, p) and gives
the initial centers.
If a callable is passed, it should take arguments X, k and
and a random state and return an initialization.
tol : float, optional
The relative increment in the results before declaring convergence.
verbose : boolean, optional
Verbosity mode
x_squared_norms : array
Precomputed x_squared_norms.
precompute_distances : boolean, default: True
Precompute distances (faster but takes more memory).
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
Returns
-------
centroid : float ndarray with shape (k, n_features)
Centroids found at the last iteration of k-means.
label : integer ndarray with shape (n_samples,)
label[i] is the code or index of the centroid the
i'th observation is closest to.
inertia : float
The final value of the inertia criterion (sum of squared distances to
the closest centroid for all observations in the training set).
n_iter : int
Number of iterations run.
"""
random_state = check_random_state(random_state)
sample_weight = _check_sample_weight(X, sample_weight)
best_labels, best_inertia, best_centers = None, None, None
# init
centers = _init_centroids(X, n_clusters, init, random_state=random_state,
x_squared_norms=x_squared_norms)
if verbose:
print("Initialization complete")
# Allocate memory to store the distances for each sample to its
# closer center for reallocation in case of ties
distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype)
# iterations
for i in range(max_iter):
centers_old = centers.copy()
# labels assignment is also called the E-step of EM
labels, inertia = \
_labels_inertia(X, sample_weight, x_squared_norms, centers,
precompute_distances=precompute_distances,
distances=distances)
# computation of the means is also called the M-step of EM
if sp.issparse(X):
centers = _k_means._centers_sparse(X, sample_weight, labels,
n_clusters, distances)
else:
centers = _k_means._centers_dense(X, sample_weight, labels,
n_clusters, distances)
if verbose:
print("Iteration %2d, inertia %.3f" % (i, inertia))
if best_inertia is None or inertia < best_inertia:
best_labels = labels.copy()
best_centers = centers.copy()
best_inertia = inertia
center_shift_total = squared_norm(centers_old - centers)
if center_shift_total <= tol:
if verbose:
print("Converged at iteration %d: "
"center shift %e within tolerance %e"
% (i, center_shift_total, tol))
break
if center_shift_total > 0:
# rerun E-step in case of non-convergence so that predicted labels
# match cluster centers
best_labels, best_inertia = \
_labels_inertia(X, sample_weight, x_squared_norms, best_centers,
precompute_distances=precompute_distances,
distances=distances)
return best_labels, best_inertia, best_centers, i + 1
def _labels_inertia_precompute_dense(X, sample_weight, x_squared_norms,
centers, distances):
"""Compute labels and inertia using a full distance matrix.
This will overwrite the 'distances' array in-place.
Parameters
----------
X : numpy array, shape (n_sample, n_features)
Input data.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
x_squared_norms : numpy array, shape (n_samples,)
Precomputed squared norms of X.
centers : numpy array, shape (n_clusters, n_features)
Cluster centers which data is assigned to.
distances : numpy array, shape (n_samples,)
Pre-allocated array in which distances are stored.
Returns
-------
labels : numpy array, dtype=np.int, shape (n_samples,)
Indices of clusters that samples are assigned to.
inertia : float
Sum of squared distances of samples to their closest cluster center.
"""
n_samples = X.shape[0]
# Breakup nearest neighbor distance computation into batches to prevent
# memory blowup in the case of a large number of samples and clusters.
# TODO: Once PR #7383 is merged use check_inputs=False in metric_kwargs.
labels, mindist = pairwise_distances_argmin_min(
X=X, Y=centers, metric='euclidean', metric_kwargs={'squared': True})
# cython k-means code assumes int32 inputs
labels = labels.astype(np.int32)
if n_samples == distances.shape[0]:
# distances will be changed in-place
distances[:] = mindist
inertia = (mindist * sample_weight).sum()
return labels, inertia
def _labels_inertia(X, sample_weight, x_squared_norms, centers,
precompute_distances=True, distances=None):
"""E step of the K-means EM algorithm.
Compute the labels and the inertia of the given samples and centers.
This will compute the distances in-place.
Parameters
----------
X : float64 array-like or CSR sparse matrix, shape (n_samples, n_features)
The input samples to assign to the labels.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
x_squared_norms : array, shape (n_samples,)
Precomputed squared euclidean norm of each data point, to speed up
computations.
centers : float array, shape (k, n_features)
The cluster centers.
precompute_distances : boolean, default: True
Precompute distances (faster but takes more memory).
distances : float array, shape (n_samples,)
Pre-allocated array to be filled in with each sample's distance
to the closest center.
Returns
-------
labels : int array of shape(n)
The resulting assignment
inertia : float
Sum of squared distances of samples to their closest cluster center.
"""
n_samples = X.shape[0]
sample_weight = _check_sample_weight(X, sample_weight)
# set the default value of centers to -1 to be able to detect any anomaly
# easily
labels = np.full(n_samples, -1, np.int32)
if distances is None:
distances = np.zeros(shape=(0,), dtype=X.dtype)
# distances will be changed in-place
if sp.issparse(X):
inertia = _k_means._assign_labels_csr(
X, sample_weight, x_squared_norms, centers, labels,
distances=distances)
else:
if precompute_distances:
return _labels_inertia_precompute_dense(X, sample_weight,
x_squared_norms, centers,
distances)
inertia = _k_means._assign_labels_array(
X, sample_weight, x_squared_norms, centers, labels,
distances=distances)
return labels, inertia
def _init_centroids(X, k, init, random_state=None, x_squared_norms=None,
init_size=None):
"""Compute the initial centroids
Parameters
----------
X : array, shape (n_samples, n_features)
k : int
number of centroids
init : {'k-means++', 'random' or ndarray or callable} optional
Method for initialization
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
x_squared_norms : array, shape (n_samples,), optional
Squared euclidean norm of each data point. Pass it if you have it at
hands already to avoid it being recomputed here. Default: None
init_size : int, optional
Number of samples to randomly sample for speeding up the
initialization (sometimes at the expense of accuracy): the
only algorithm is initialized by running a batch KMeans on a
random subset of the data. This needs to be larger than k.
Returns
-------
centers : array, shape(k, n_features)
"""
random_state = check_random_state(random_state)
n_samples = X.shape[0]
if x_squared_norms is None:
x_squared_norms = row_norms(X, squared=True)
if init_size is not None and init_size < n_samples:
if init_size < k:
warnings.warn(
"init_size=%d should be larger than k=%d. "
"Setting it to 3*k" % (init_size, k),
RuntimeWarning, stacklevel=2)
init_size = 3 * k
init_indices = random_state.randint(0, n_samples, init_size)
X = X[init_indices]
x_squared_norms = x_squared_norms[init_indices]
n_samples = X.shape[0]
elif n_samples < k:
raise ValueError(
"n_samples=%d should be larger than k=%d" % (n_samples, k))
if isinstance(init, string_types) and init == 'k-means++':
centers = _k_init(X, k, random_state=random_state,
x_squared_norms=x_squared_norms)
elif isinstance(init, string_types) and init == 'random':
seeds = random_state.permutation(n_samples)[:k]
centers = X[seeds]
elif hasattr(init, '__array__'):
# ensure that the centers have the same dtype as X
# this is a requirement of fused types of cython
centers = np.array(init, dtype=X.dtype)
elif callable(init):
centers = init(X, k, random_state=random_state)
centers = np.asarray(centers, dtype=X.dtype)
else:
raise ValueError("the init parameter for the k-means should "
"be 'k-means++' or 'random' or an ndarray, "
"'%s' (type '%s') was passed." % (init, type(init)))
if sp.issparse(centers):
centers = centers.toarray()
_validate_center_shape(X, k, centers)
return centers
class KMeans(BaseEstimator, ClusterMixin, TransformerMixin):
"""K-Means clustering
Read more in the :ref:`User Guide <k_means>`.
Parameters
----------
n_clusters : int, optional, default: 8
The number of clusters to form as well as the number of
centroids to generate.
init : {'k-means++', 'random' or an ndarray}
Method for initialization, defaults to 'k-means++':
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose k observations (rows) at random from data for
the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
n_init : int, default: 10
Number of time the k-means algorithm will be run with different
centroid seeds. The final results will be the best output of
n_init consecutive runs in terms of inertia.
max_iter : int, default: 300
Maximum number of iterations of the k-means algorithm for a
single run.
tol : float, default: 1e-4
Relative tolerance with regards to inertia to declare convergence
precompute_distances : {'auto', True, False}
Precompute distances (faster but takes more memory).
'auto' : do not precompute distances if n_samples * n_clusters > 12
million. This corresponds to about 100MB overhead per job using
double precision.
True : always precompute distances
False : never precompute distances
verbose : int, default 0
Verbosity mode.
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
copy_x : boolean, optional
When pre-computing distances it is more numerically accurate to center
the data first. If copy_x is True (default), then the original data is
not modified, ensuring X is C-contiguous. If False, the original data
is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding
the data mean, in this case it will also not ensure that data is
C-contiguous which may cause a significant slowdown.
n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation. This works by computing
each of the n_init runs in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
algorithm : "auto", "full" or "elkan", default="auto"
K-means algorithm to use. The classical EM-style algorithm is "full".
The "elkan" variation is more efficient by using the triangle
inequality, but currently doesn't support sparse data. "auto" chooses
"elkan" for dense data and "full" for sparse data.
Attributes
----------
cluster_centers_ : array, [n_clusters, n_features]
Coordinates of cluster centers. If the algorithm stops before fully
converging (see ``tol`` and ``max_iter``), these will not be
consistent with ``labels_``.
labels_ :
Labels of each point
inertia_ : float
Sum of squared distances of samples to their closest cluster center.
n_iter_ : int
Number of iterations run.
Examples
--------
>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([0, 0, 0, 1, 1, 1], dtype=int32)
>>> kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)
>>> kmeans.cluster_centers_
array([[1., 2.],
[4., 2.]])
See also
--------
MiniBatchKMeans
Alternative online implementation that does incremental updates
of the centers positions using mini-batches.
For large scale learning (say n_samples > 10k) MiniBatchKMeans is
probably much faster than the default batch implementation.
Notes
------
The k-means problem is solved using either Lloyd's or Elkan's algorithm.
The average complexity is given by O(k n T), were n is the number of
samples and T is the number of iteration.
The worst case complexity is given by O(n^(k+2/p)) with
n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,
'How slow is the k-means method?' SoCG2006)
In practice, the k-means algorithm is very fast (one of the fastest
clustering algorithms available), but it falls in local minima. That's why
it can be useful to restart it several times.
If the algorithm stops before fully converging (because of ``tol`` or
``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent,
i.e. the ``cluster_centers_`` will not be the means of the points in each
cluster. Also, the estimator will reassign ``labels_`` after the last
iteration to make ``labels_`` consistent with ``predict`` on the training
set.
"""
def __init__(self, n_clusters=8, init='k-means++', n_init=10,
max_iter=300, tol=1e-4, precompute_distances='auto',
verbose=0, random_state=None, copy_x=True,
n_jobs=None, algorithm='auto'):
self.n_clusters = n_clusters
self.init = init
self.max_iter = max_iter
self.tol = tol
self.precompute_distances = precompute_distances
self.n_init = n_init
self.verbose = verbose
self.random_state = random_state
self.copy_x = copy_x
self.n_jobs = n_jobs
self.algorithm = algorithm
def _check_test_data(self, X):
X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES)
n_samples, n_features = X.shape
expected_n_features = self.cluster_centers_.shape[1]
if not n_features == expected_n_features:
raise ValueError("Incorrect number of features. "
"Got %d features, expected %d" % (
n_features, expected_n_features))
return X
def fit(self, X, y=None, sample_weight=None):
"""Compute k-means clustering.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
"""
random_state = check_random_state(self.random_state)
self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \
k_means(
X, n_clusters=self.n_clusters, sample_weight=sample_weight,
init=self.init, n_init=self.n_init,
max_iter=self.max_iter, verbose=self.verbose,
precompute_distances=self.precompute_distances,
tol=self.tol, random_state=random_state, copy_x=self.copy_x,
n_jobs=self.n_jobs, algorithm=self.algorithm,
return_n_iter=True)
return self
def fit_predict(self, X, y=None, sample_weight=None):
"""Compute cluster centers and predict cluster index for each sample.
Convenience method; equivalent to calling fit(X) followed by
predict(X).
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to transform.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
return self.fit(X, sample_weight=sample_weight).labels_
def fit_transform(self, X, y=None, sample_weight=None):
"""Compute clustering and transform X to cluster-distance space.
Equivalent to fit(X).transform(X), but more efficiently implemented.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to transform.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
X_new : array, shape [n_samples, k]
X transformed in the new space.
"""
# Currently, this just skips a copy of the data if it is not in
# np.array or CSR format already.
# XXX This skips _check_test_data, which may change the dtype;
# we should refactor the input validation.
return self.fit(X, sample_weight=sample_weight)._transform(X)
def transform(self, X):
"""Transform X to a cluster-distance space.
In the new space, each dimension is the distance to the cluster
centers. Note that even if X is sparse, the array returned by
`transform` will typically be dense.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to transform.
Returns
-------
X_new : array, shape [n_samples, k]
X transformed in the new space.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
return self._transform(X)
def _transform(self, X):
"""guts of transform method; no input validation"""
return euclidean_distances(X, self.cluster_centers_)
def predict(self, X, sample_weight=None):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
return _labels_inertia(X, sample_weight, x_squared_norms,
self.cluster_centers_)[0]
def score(self, X, y=None, sample_weight=None):
"""Opposite of the value of X on the K-means objective.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
score : float
Opposite of the value of X on the K-means objective.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
return -_labels_inertia(X, sample_weight, x_squared_norms,
self.cluster_centers_)[1]
def _mini_batch_step(X, sample_weight, x_squared_norms, centers, weight_sums,
old_center_buffer, compute_squared_diff,
distances, random_reassign=False,
random_state=None, reassignment_ratio=.01,
verbose=False):
"""Incremental update of the centers for the Minibatch K-Means algorithm.
Parameters
----------
X : array, shape (n_samples, n_features)
The original data array.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
x_squared_norms : array, shape (n_samples,)
Squared euclidean norm of each data point.
centers : array, shape (k, n_features)
The cluster centers. This array is MODIFIED IN PLACE
counts : array, shape (k,)
The vector in which we keep track of the numbers of elements in a
cluster. This array is MODIFIED IN PLACE
distances : array, dtype float, shape (n_samples), optional
If not None, should be a pre-allocated array that will be used to store
the distances of each sample to its closest center.
May not be None when random_reassign is True.
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization and to
pick new clusters amongst observations with uniform probability. Use
an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
random_reassign : boolean, optional
If True, centers with very low counts are randomly reassigned
to observations.
reassignment_ratio : float, optional
Control the fraction of the maximum number of counts for a
center to be reassigned. A higher value means that low count
centers are more likely to be reassigned, which means that the
model will take longer to converge, but should converge in a
better clustering.
verbose : bool, optional, default False
Controls the verbosity.
compute_squared_diff : bool
If set to False, the squared diff computation is skipped.
old_center_buffer : int
Copy of old centers for monitoring convergence.
Returns
-------
inertia : float
Sum of squared distances of samples to their closest cluster center.
squared_diff : numpy array, shape (n_clusters,)
Squared distances between previous and updated cluster centers.
"""
# Perform label assignment to nearest centers
nearest_center, inertia = _labels_inertia(X, sample_weight,
x_squared_norms, centers,
distances=distances)
if random_reassign and reassignment_ratio > 0:
random_state = check_random_state(random_state)
# Reassign clusters that have very low weight
to_reassign = weight_sums < reassignment_ratio * weight_sums.max()
# pick at most .5 * batch_size samples as new centers
if to_reassign.sum() > .5 * X.shape[0]:
indices_dont_reassign = \
np.argsort(weight_sums)[int(.5 * X.shape[0]):]
to_reassign[indices_dont_reassign] = False
n_reassigns = to_reassign.sum()
if n_reassigns:
# Pick new clusters amongst observations with uniform probability
new_centers = random_state.choice(X.shape[0], replace=False,
size=n_reassigns)
if verbose:
print("[MiniBatchKMeans] Reassigning %i cluster centers."
% n_reassigns)
if sp.issparse(X) and not sp.issparse(centers):
assign_rows_csr(X, new_centers.astype(np.intp),
np.where(to_reassign)[0].astype(np.intp),
centers)
else:
centers[to_reassign] = X[new_centers]
# reset counts of reassigned centers, but don't reset them too small
# to avoid instant reassignment. This is a pretty dirty hack as it
# also modifies the learning rates.
weight_sums[to_reassign] = np.min(weight_sums[~to_reassign])
# implementation for the sparse CSR representation completely written in
# cython
if sp.issparse(X):
return inertia, _k_means._mini_batch_update_csr(
X, sample_weight, x_squared_norms, centers, weight_sums,
nearest_center, old_center_buffer, compute_squared_diff)
# dense variant in mostly numpy (not as memory efficient though)
k = centers.shape[0]
squared_diff = 0.0
for center_idx in range(k):
# find points from minibatch that are assigned to this center
center_mask = nearest_center == center_idx
wsum = sample_weight[center_mask].sum()
if wsum > 0:
if compute_squared_diff:
old_center_buffer[:] = centers[center_idx]
# inplace remove previous count scaling
centers[center_idx] *= weight_sums[center_idx]
# inplace sum with new points members of this cluster
centers[center_idx] += \
np.sum(X[center_mask] *
sample_weight[center_mask, np.newaxis], axis=0)
# update the count statistics for this center
weight_sums[center_idx] += wsum
# inplace rescale to compute mean of all points (old and new)
# Note: numpy >= 1.10 does not support '/=' for the following
# expression for a mixture of int and float (see numpy issue #6464)
centers[center_idx] = centers[center_idx] / weight_sums[center_idx]
# update the squared diff if necessary
if compute_squared_diff:
diff = centers[center_idx].ravel() - old_center_buffer.ravel()
squared_diff += np.dot(diff, diff)
return inertia, squared_diff
def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
n_samples, centers_squared_diff, batch_inertia,
context, verbose=0):
"""Helper function to encapsulate the early stopping logic"""
# Normalize inertia to be able to compare values when
# batch_size changes
batch_inertia /= model.batch_size
centers_squared_diff /= model.batch_size
# Compute an Exponentially Weighted Average of the squared
# diff to monitor the convergence while discarding
# minibatch-local stochastic variability:
# https://en.wikipedia.org/wiki/Moving_average
ewa_diff = context.get('ewa_diff')
ewa_inertia = context.get('ewa_inertia')
if ewa_diff is None:
ewa_diff = centers_squared_diff
ewa_inertia = batch_inertia
else:
alpha = float(model.batch_size) * 2.0 / (n_samples + 1)
alpha = 1.0 if alpha > 1.0 else alpha
ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha
ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha
# Log progress to be able to monitor convergence
if verbose:
progress_msg = (
'Minibatch iteration %d/%d:'
' mean batch inertia: %f, ewa inertia: %f ' % (
iteration_idx + 1, n_iter, batch_inertia,
ewa_inertia))
print(progress_msg)
# Early stopping based on absolute tolerance on squared change of
# centers position (using EWA smoothing)
if tol > 0.0 and ewa_diff <= tol:
if verbose:
print('Converged (small centers change) at iteration %d/%d'
% (iteration_idx + 1, n_iter))
return True
# Early stopping heuristic due to lack of improvement on smoothed inertia
ewa_inertia_min = context.get('ewa_inertia_min')
no_improvement = context.get('no_improvement', 0)
if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min:
no_improvement = 0
ewa_inertia_min = ewa_inertia
else:
no_improvement += 1
if (model.max_no_improvement is not None
and no_improvement >= model.max_no_improvement):
if verbose:
print('Converged (lack of improvement in inertia)'
' at iteration %d/%d'
% (iteration_idx + 1, n_iter))
return True
# update the convergence context to maintain state across successive calls:
context['ewa_diff'] = ewa_diff
context['ewa_inertia'] = ewa_inertia
context['ewa_inertia_min'] = ewa_inertia_min
context['no_improvement'] = no_improvement
return False
class MiniBatchKMeans(KMeans):
"""Mini-Batch K-Means clustering
Read more in the :ref:`User Guide <mini_batch_kmeans>`.
Parameters
----------
n_clusters : int, optional, default: 8
The number of clusters to form as well as the number of
centroids to generate.
init : {'k-means++', 'random' or an ndarray}, default: 'k-means++'
Method for initialization, defaults to 'k-means++':
'k-means++' : selects initial cluster centers for k-mean
clustering in a smart way to speed up convergence. See section
Notes in k_init for more details.
'random': choose k observations (rows) at random from data for
the initial centroids.
If an ndarray is passed, it should be of shape (n_clusters, n_features)
and gives the initial centers.
max_iter : int, optional
Maximum number of iterations over the complete dataset before
stopping independently of any early stopping criterion heuristics.
batch_size : int, optional, default: 100
Size of the mini batches.
verbose : boolean, optional
Verbosity mode.
compute_labels : boolean, default=True
Compute label assignment and inertia for the complete dataset
once the minibatch optimization has converged in fit.
random_state : int, RandomState instance or None (default)
Determines random number generation for centroid initialization and
random reassignment. Use an int to make the randomness deterministic.
See :term:`Glossary <random_state>`.
tol : float, default: 0.0
Control early stopping based on the relative center changes as
measured by a smoothed, variance-normalized of the mean center
squared position changes. This early stopping heuristics is
closer to the one used for the batch variant of the algorithms
but induces a slight computational and memory overhead over the
inertia heuristic.
To disable convergence detection based on normalized center
change, set tol to 0.0 (default).
max_no_improvement : int, default: 10
Control early stopping based on the consecutive number of mini
batches that does not yield an improvement on the smoothed inertia.
To disable convergence detection based on inertia, set
max_no_improvement to None.
init_size : int, optional, default: 3 * batch_size
Number of samples to randomly sample for speeding up the
initialization (sometimes at the expense of accuracy): the
only algorithm is initialized by running a batch KMeans on a
random subset of the data. This needs to be larger than n_clusters.
n_init : int, default=3
Number of random initializations that are tried.
In contrast to KMeans, the algorithm is only run once, using the
best of the ``n_init`` initializations as measured by inertia.
reassignment_ratio : float, default: 0.01
Control the fraction of the maximum number of counts for a
center to be reassigned. A higher value means that low count
centers are more easily reassigned, which means that the
model will take longer to converge, but should converge in a
better clustering.
Attributes
----------
cluster_centers_ : array, [n_clusters, n_features]
Coordinates of cluster centers
labels_ :
Labels of each point (if compute_labels is set to True).
inertia_ : float
The value of the inertia criterion associated with the chosen
partition (if compute_labels is set to True). The inertia is
defined as the sum of square distances of samples to their nearest
neighbor.
Examples
--------
>>> from sklearn.cluster import MiniBatchKMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 0], [4, 4],
... [4, 5], [0, 1], [2, 2],
... [3, 2], [5, 5], [1, -1]])
>>> # manually fit on batches
>>> kmeans = MiniBatchKMeans(n_clusters=2,
... random_state=0,
... batch_size=6)
>>> kmeans = kmeans.partial_fit(X[0:6,:])
>>> kmeans = kmeans.partial_fit(X[6:12,:])
>>> kmeans.cluster_centers_
array([[1, 1],
[3, 4]])
>>> kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)
>>> # fit on the whole data
>>> kmeans = MiniBatchKMeans(n_clusters=2,
... random_state=0,
... batch_size=6,
... max_iter=10).fit(X)
>>> kmeans.cluster_centers_
array([[3.95918367, 2.40816327],
[1.12195122, 1.3902439 ]])
>>> kmeans.predict([[0, 0], [4, 4]])
array([1, 0], dtype=int32)
See also
--------
KMeans
The classic implementation of the clustering method based on the
Lloyd's algorithm. It consumes the whole set of input data at each
iteration.
Notes
-----
See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
"""
def __init__(self, n_clusters=8, init='k-means++', max_iter=100,
batch_size=100, verbose=0, compute_labels=True,
random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01):
super(MiniBatchKMeans, self).__init__(
n_clusters=n_clusters, init=init, max_iter=max_iter,
verbose=verbose, random_state=random_state, tol=tol, n_init=n_init)
self.max_no_improvement = max_no_improvement
self.batch_size = batch_size
self.compute_labels = compute_labels
self.init_size = init_size
self.reassignment_ratio = reassignment_ratio
def fit(self, X, y=None, sample_weight=None):
"""Compute the centroids on X by chunking it into mini-batches.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Training instances to cluster. It must be noted that the data
will be converted to C ordering, which will cause a memory copy
if the given data is not C-contiguous.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
"""
random_state = check_random_state(self.random_state)
X = check_array(X, accept_sparse="csr", order='C',
dtype=[np.float64, np.float32])
n_samples, n_features = X.shape
if n_samples < self.n_clusters:
raise ValueError("n_samples=%d should be >= n_clusters=%d"
% (n_samples, self.n_clusters))
sample_weight = _check_sample_weight(X, sample_weight)
n_init = self.n_init
if hasattr(self.init, '__array__'):
self.init = np.ascontiguousarray(self.init, dtype=X.dtype)
if n_init != 1:
warnings.warn(
'Explicit initial center position passed: '
'performing only one init in MiniBatchKMeans instead of '
'n_init=%d'
% self.n_init, RuntimeWarning, stacklevel=2)
n_init = 1
x_squared_norms = row_norms(X, squared=True)
if self.tol > 0.0:
tol = _tolerance(X, self.tol)
# using tol-based early stopping needs the allocation of a
# dedicated before which can be expensive for high dim data:
# hence we allocate it outside of the main loop
old_center_buffer = np.zeros(n_features, dtype=X.dtype)
else:
tol = 0.0
# no need for the center buffer if tol-based early stopping is
# disabled
old_center_buffer = np.zeros(0, dtype=X.dtype)
distances = np.zeros(self.batch_size, dtype=X.dtype)
n_batches = int(np.ceil(float(n_samples) / self.batch_size))
n_iter = int(self.max_iter * n_batches)
init_size = self.init_size
if init_size is None:
init_size = 3 * self.batch_size
if init_size > n_samples:
init_size = n_samples
self.init_size_ = init_size
validation_indices = random_state.randint(0, n_samples, init_size)
X_valid = X[validation_indices]
sample_weight_valid = sample_weight[validation_indices]
x_squared_norms_valid = x_squared_norms[validation_indices]
# perform several inits with random sub-sets
best_inertia = None
for init_idx in range(n_init):
if self.verbose:
print("Init %d/%d with method: %s"
% (init_idx + 1, n_init, self.init))
weight_sums = np.zeros(self.n_clusters, dtype=sample_weight.dtype)
# TODO: once the `k_means` function works with sparse input we
# should refactor the following init to use it instead.
# Initialize the centers using only a fraction of the data as we
# expect n_samples to be very large when using MiniBatchKMeans
cluster_centers = _init_centroids(
X, self.n_clusters, self.init,
random_state=random_state,
x_squared_norms=x_squared_norms,
init_size=init_size)
# Compute the label assignment on the init dataset
batch_inertia, centers_squared_diff = _mini_batch_step(
X_valid, sample_weight_valid,
x_squared_norms[validation_indices], cluster_centers,
weight_sums, old_center_buffer, False, distances=None,
verbose=self.verbose)
# Keep only the best cluster centers across independent inits on
# the common validation set
_, inertia = _labels_inertia(X_valid, sample_weight_valid,
x_squared_norms_valid,
cluster_centers)
if self.verbose:
print("Inertia for init %d/%d: %f"
% (init_idx + 1, n_init, inertia))
if best_inertia is None or inertia < best_inertia:
self.cluster_centers_ = cluster_centers
self.counts_ = weight_sums
best_inertia = inertia
# Empty context to be used inplace by the convergence check routine
convergence_context = {}
# Perform the iterative optimization until the final convergence
# criterion
for iteration_idx in range(n_iter):
# Sample a minibatch from the full dataset
minibatch_indices = random_state.randint(
0, n_samples, self.batch_size)
# Perform the actual update step on the minibatch data
batch_inertia, centers_squared_diff = _mini_batch_step(
X[minibatch_indices], sample_weight[minibatch_indices],
x_squared_norms[minibatch_indices],
self.cluster_centers_, self.counts_,
old_center_buffer, tol > 0.0, distances=distances,
# Here we randomly choose whether to perform
# random reassignment: the choice is done as a function
# of the iteration index, and the minimum number of
# counts, in order to force this reassignment to happen
# every once in a while
random_reassign=((iteration_idx + 1)
% (10 + int(self.counts_.min())) == 0),
random_state=random_state,
reassignment_ratio=self.reassignment_ratio,
verbose=self.verbose)
# Monitor convergence and do early stopping if necessary
if _mini_batch_convergence(
self, iteration_idx, n_iter, tol, n_samples,
centers_squared_diff, batch_inertia, convergence_context,
verbose=self.verbose):
break
self.n_iter_ = iteration_idx + 1
if self.compute_labels:
self.labels_, self.inertia_ = \
self._labels_inertia_minibatch(X, sample_weight)
return self
def _labels_inertia_minibatch(self, X, sample_weight):
"""Compute labels and inertia using mini batches.
This is slightly slower than doing everything at once but preventes
memory errors / segfaults.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input data.
sample_weight : array-like, shape (n_samples,)
The weights for each observation in X.
Returns
-------
labels : array, shape (n_samples,)
Cluster labels for each point.
inertia : float
Sum of squared distances of points to nearest cluster.
"""
if self.verbose:
print('Computing label assignment and total inertia')
sample_weight = _check_sample_weight(X, sample_weight)
x_squared_norms = row_norms(X, squared=True)
slices = gen_batches(X.shape[0], self.batch_size)
results = [_labels_inertia(X[s], sample_weight[s], x_squared_norms[s],
self.cluster_centers_) for s in slices]
labels, inertia = zip(*results)
return np.hstack(labels), np.sum(inertia)
def partial_fit(self, X, y=None, sample_weight=None):
"""Update k means estimate on a single mini-batch X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Coordinates of the data points to cluster. It must be noted that
X will be copied if it is not C-contiguous.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
"""
X = check_array(X, accept_sparse="csr", order="C")
n_samples, n_features = X.shape
if hasattr(self.init, '__array__'):
self.init = np.ascontiguousarray(self.init, dtype=X.dtype)
if n_samples == 0:
return self
sample_weight = _check_sample_weight(X, sample_weight)
x_squared_norms = row_norms(X, squared=True)
self.random_state_ = getattr(self, "random_state_",
check_random_state(self.random_state))
if (not hasattr(self, 'counts_')
or not hasattr(self, 'cluster_centers_')):
# this is the first call partial_fit on this object:
# initialize the cluster centers
self.cluster_centers_ = _init_centroids(
X, self.n_clusters, self.init,
random_state=self.random_state_,
x_squared_norms=x_squared_norms, init_size=self.init_size)
self.counts_ = np.zeros(self.n_clusters,
dtype=sample_weight.dtype)
random_reassign = False
distances = None
else:
# The lower the minimum count is, the more we do random
# reassignment, however, we don't want to do random
# reassignment too often, to allow for building up counts
random_reassign = self.random_state_.randint(
10 * (1 + self.counts_.min())) == 0
distances = np.zeros(X.shape[0], dtype=X.dtype)
_mini_batch_step(X, sample_weight, x_squared_norms,
self.cluster_centers_, self.counts_,
np.zeros(0, dtype=X.dtype), 0,
random_reassign=random_reassign, distances=distances,
random_state=self.random_state_,
reassignment_ratio=self.reassignment_ratio,
verbose=self.verbose)
if self.compute_labels:
self.labels_, self.inertia_ = _labels_inertia(
X, sample_weight, x_squared_norms, self.cluster_centers_)
return self
def predict(self, X, sample_weight=None):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
return self._labels_inertia_minibatch(X, sample_weight)[0]
|