File: k_means_.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1745 lines) | stat: -rw-r--r-- 68,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
"""K-means clustering"""

# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Thomas Rueckstiess <ruecksti@in.tum.de>
#          James Bergstra <james.bergstra@umontreal.ca>
#          Jan Schlueter <scikit-learn@jan-schlueter.de>
#          Nelle Varoquaux
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Robert Layton <robertlayton@gmail.com>
# License: BSD 3 clause

from __future__ import division
import warnings

import numpy as np
import scipy.sparse as sp

from ..base import BaseEstimator, ClusterMixin, TransformerMixin
from ..metrics.pairwise import euclidean_distances
from ..metrics.pairwise import pairwise_distances_argmin_min
from ..utils.extmath import row_norms, squared_norm, stable_cumsum
from ..utils.sparsefuncs_fast import assign_rows_csr
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.validation import _num_samples
from ..utils import check_array
from ..utils import gen_batches
from ..utils import check_random_state
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..utils._joblib import Parallel
from ..utils._joblib import delayed
from ..utils._joblib import effective_n_jobs
from ..externals.six import string_types
from ..exceptions import ConvergenceWarning
from . import _k_means
from ._k_means_elkan import k_means_elkan


###############################################################################
# Initialization heuristic


def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
    """Init n_clusters seeds according to k-means++

    Parameters
    -----------
    X : array or sparse matrix, shape (n_samples, n_features)
        The data to pick seeds for. To avoid memory copy, the input data
        should be double precision (dtype=np.float64).

    n_clusters : integer
        The number of seeds to choose

    x_squared_norms : array, shape (n_samples,)
        Squared Euclidean norm of each data point.

    random_state : int, RandomState instance
        The generator used to initialize the centers. Use an int to make the
        randomness deterministic.
        See :term:`Glossary <random_state>`.

    n_local_trials : integer, optional
        The number of seeding trials for each center (except the first),
        of which the one reducing inertia the most is greedily chosen.
        Set to None to make the number of trials depend logarithmically
        on the number of seeds (2+log(k)); this is the default.

    Notes
    -----
    Selects initial cluster centers for k-mean clustering in a smart way
    to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
    "k-means++: the advantages of careful seeding". ACM-SIAM symposium
    on Discrete algorithms. 2007

    Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
    which is the implementation used in the aforementioned paper.
    """
    n_samples, n_features = X.shape

    centers = np.empty((n_clusters, n_features), dtype=X.dtype)

    assert x_squared_norms is not None, 'x_squared_norms None in _k_init'

    # Set the number of local seeding trials if none is given
    if n_local_trials is None:
        # This is what Arthur/Vassilvitskii tried, but did not report
        # specific results for other than mentioning in the conclusion
        # that it helped.
        n_local_trials = 2 + int(np.log(n_clusters))

    # Pick first center randomly
    center_id = random_state.randint(n_samples)
    if sp.issparse(X):
        centers[0] = X[center_id].toarray()
    else:
        centers[0] = X[center_id]

    # Initialize list of closest distances and calculate current potential
    closest_dist_sq = euclidean_distances(
        centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms,
        squared=True)
    current_pot = closest_dist_sq.sum()

    # Pick the remaining n_clusters-1 points
    for c in range(1, n_clusters):
        # Choose center candidates by sampling with probability proportional
        # to the squared distance to the closest existing center
        rand_vals = random_state.random_sample(n_local_trials) * current_pot
        candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq),
                                        rand_vals)

        # Compute distances to center candidates
        distance_to_candidates = euclidean_distances(
            X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True)

        # Decide which candidate is the best
        best_candidate = None
        best_pot = None
        best_dist_sq = None
        for trial in range(n_local_trials):
            # Compute potential when including center candidate
            new_dist_sq = np.minimum(closest_dist_sq,
                                     distance_to_candidates[trial])
            new_pot = new_dist_sq.sum()

            # Store result if it is the best local trial so far
            if (best_candidate is None) or (new_pot < best_pot):
                best_candidate = candidate_ids[trial]
                best_pot = new_pot
                best_dist_sq = new_dist_sq

        # Permanently add best center candidate found in local tries
        if sp.issparse(X):
            centers[c] = X[best_candidate].toarray()
        else:
            centers[c] = X[best_candidate]
        current_pot = best_pot
        closest_dist_sq = best_dist_sq

    return centers


###############################################################################
# K-means batch estimation by EM (expectation maximization)

def _validate_center_shape(X, n_centers, centers):
    """Check if centers is compatible with X and n_centers"""
    if len(centers) != n_centers:
        raise ValueError('The shape of the initial centers (%s) '
                         'does not match the number of clusters %i'
                         % (centers.shape, n_centers))
    if centers.shape[1] != X.shape[1]:
        raise ValueError(
            "The number of features of the initial centers %s "
            "does not match the number of features of the data %s."
            % (centers.shape[1], X.shape[1]))


def _tolerance(X, tol):
    """Return a tolerance which is independent of the dataset"""
    if sp.issparse(X):
        variances = mean_variance_axis(X, axis=0)[1]
    else:
        variances = np.var(X, axis=0)
    return np.mean(variances) * tol


def _check_sample_weight(X, sample_weight):
    """Set sample_weight if None, and check for correct dtype"""
    n_samples = X.shape[0]
    if sample_weight is None:
        return np.ones(n_samples, dtype=X.dtype)
    else:
        sample_weight = np.asarray(sample_weight)
        if n_samples != len(sample_weight):
            raise ValueError("n_samples=%d should be == len(sample_weight)=%d"
                             % (n_samples, len(sample_weight)))
        # normalize the weights to sum up to n_samples
        scale = n_samples / sample_weight.sum()
        return (sample_weight * scale).astype(X.dtype)


def k_means(X, n_clusters, sample_weight=None, init='k-means++',
            precompute_distances='auto', n_init=10, max_iter=300,
            verbose=False, tol=1e-4, random_state=None, copy_x=True,
            n_jobs=None, algorithm="auto", return_n_iter=False):
    """K-means clustering algorithm.

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------
    X : array-like or sparse matrix, shape (n_samples, n_features)
        The observations to cluster. It must be noted that the data
        will be converted to C ordering, which will cause a memory copy
        if the given data is not C-contiguous.

    n_clusters : int
        The number of clusters to form as well as the number of
        centroids to generate.

    sample_weight : array-like, shape (n_samples,), optional
        The weights for each observation in X. If None, all observations
        are assigned equal weight (default: None)

    init : {'k-means++', 'random', or ndarray, or a callable}, optional
        Method for initialization, default to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

        If a callable is passed, it should take arguments X, k and
        and a random state and return an initialization.

    precompute_distances : {'auto', True, False}
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances

        False : never precompute distances

    n_init : int, optional, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    max_iter : int, optional, default 300
        Maximum number of iterations of the k-means algorithm to run.

    verbose : boolean, optional
        Verbosity mode.

    tol : float, optional
        The relative increment in the results before declaring convergence.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    copy_x : boolean, optional
        When pre-computing distances it is more numerically accurate to center
        the data first.  If copy_x is True (default), then the original data is
        not modified, ensuring X is C-contiguous.  If False, the original data
        is modified, and put back before the function returns, but small
        numerical differences may be introduced by subtracting and then adding
        the data mean, in this case it will also not ensure that data is
        C-contiguous which may cause a significant slowdown.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation. This works by computing
        each of the n_init runs in parallel.

        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    algorithm : "auto", "full" or "elkan", default="auto"
        K-means algorithm to use. The classical EM-style algorithm is "full".
        The "elkan" variation is more efficient by using the triangle
        inequality, but currently doesn't support sparse data. "auto" chooses
        "elkan" for dense data and "full" for sparse data.

    return_n_iter : bool, optional
        Whether or not to return the number of iterations.

    Returns
    -------
    centroid : float ndarray with shape (k, n_features)
        Centroids found at the last iteration of k-means.

    label : integer ndarray with shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia : float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    best_n_iter : int
        Number of iterations corresponding to the best results.
        Returned only if `return_n_iter` is set to True.

    """
    if n_init <= 0:
        raise ValueError("Invalid number of initializations."
                         " n_init=%d must be bigger than zero." % n_init)
    random_state = check_random_state(random_state)

    if max_iter <= 0:
        raise ValueError('Number of iterations should be a positive number,'
                         ' got %d instead' % max_iter)

    # avoid forcing order when copy_x=False
    order = "C" if copy_x else None
    X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32],
                    order=order, copy=copy_x)
    # verify that the number of samples given is larger than k
    if _num_samples(X) < n_clusters:
        raise ValueError("n_samples=%d should be >= n_clusters=%d" % (
            _num_samples(X), n_clusters))

    tol = _tolerance(X, tol)

    # If the distances are precomputed every job will create a matrix of shape
    # (n_clusters, n_samples). To stop KMeans from eating up memory we only
    # activate this if the created matrix is guaranteed to be under 100MB. 12
    # million entries consume a little under 100MB if they are of type double.
    if precompute_distances == 'auto':
        n_samples = X.shape[0]
        precompute_distances = (n_clusters * n_samples) < 12e6
    elif isinstance(precompute_distances, bool):
        pass
    else:
        raise ValueError("precompute_distances should be 'auto' or True/False"
                         ", but a value of %r was passed" %
                         precompute_distances)

    # Validate init array
    if hasattr(init, '__array__'):
        init = check_array(init, dtype=X.dtype.type, copy=True)
        _validate_center_shape(X, n_clusters, init)

        if n_init != 1:
            warnings.warn(
                'Explicit initial center position passed: '
                'performing only one init in k-means instead of n_init=%d'
                % n_init, RuntimeWarning, stacklevel=2)
            n_init = 1

    # subtract of mean of x for more accurate distance computations
    if not sp.issparse(X):
        X_mean = X.mean(axis=0)
        # The copy was already done above
        X -= X_mean

        if hasattr(init, '__array__'):
            init -= X_mean

    # precompute squared norms of data points
    x_squared_norms = row_norms(X, squared=True)

    best_labels, best_inertia, best_centers = None, None, None
    if n_clusters == 1:
        # elkan doesn't make sense for a single cluster, full will produce
        # the right result.
        algorithm = "full"
    if algorithm == "auto":
        algorithm = "full" if sp.issparse(X) else 'elkan'
    if algorithm == "full":
        kmeans_single = _kmeans_single_lloyd
    elif algorithm == "elkan":
        kmeans_single = _kmeans_single_elkan
    else:
        raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got"
                         " %s" % str(algorithm))
    if effective_n_jobs(n_jobs):
        # For a single thread, less memory is needed if we just store one set
        # of the best results (as opposed to one set per run per thread).
        for it in range(n_init):
            # run a k-means once
            labels, inertia, centers, n_iter_ = kmeans_single(
                X, sample_weight, n_clusters, max_iter=max_iter, init=init,
                verbose=verbose, precompute_distances=precompute_distances,
                tol=tol, x_squared_norms=x_squared_norms,
                random_state=random_state)
            # determine if these results are the best so far
            if best_inertia is None or inertia < best_inertia:
                best_labels = labels.copy()
                best_centers = centers.copy()
                best_inertia = inertia
                best_n_iter = n_iter_
    else:
        # parallelisation of k-means runs
        seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
        results = Parallel(n_jobs=n_jobs, verbose=0)(
            delayed(kmeans_single)(X, sample_weight, n_clusters,
                                   max_iter=max_iter, init=init,
                                   verbose=verbose, tol=tol,
                                   precompute_distances=precompute_distances,
                                   x_squared_norms=x_squared_norms,
                                   # Change seed to ensure variety
                                   random_state=seed)
            for seed in seeds)
        # Get results with the lowest inertia
        labels, inertia, centers, n_iters = zip(*results)
        best = np.argmin(inertia)
        best_labels = labels[best]
        best_inertia = inertia[best]
        best_centers = centers[best]
        best_n_iter = n_iters[best]

    if not sp.issparse(X):
        if not copy_x:
            X += X_mean
        best_centers += X_mean

    distinct_clusters = len(set(best_labels))
    if distinct_clusters < n_clusters:
        warnings.warn("Number of distinct clusters ({}) found smaller than "
                      "n_clusters ({}). Possibly due to duplicate points "
                      "in X.".format(distinct_clusters, n_clusters),
                      ConvergenceWarning, stacklevel=2)

    if return_n_iter:
        return best_centers, best_labels, best_inertia, best_n_iter
    else:
        return best_centers, best_labels, best_inertia


def _kmeans_single_elkan(X, sample_weight, n_clusters, max_iter=300,
                         init='k-means++', verbose=False, x_squared_norms=None,
                         random_state=None, tol=1e-4,
                         precompute_distances=True):
    if sp.issparse(X):
        raise TypeError("algorithm='elkan' not supported for sparse input X")
    random_state = check_random_state(random_state)
    if x_squared_norms is None:
        x_squared_norms = row_norms(X, squared=True)
    # init
    centers = _init_centroids(X, n_clusters, init, random_state=random_state,
                              x_squared_norms=x_squared_norms)
    centers = np.ascontiguousarray(centers)
    if verbose:
        print('Initialization complete')

    checked_sample_weight = _check_sample_weight(X, sample_weight)
    centers, labels, n_iter = k_means_elkan(X, checked_sample_weight,
                                            n_clusters, centers, tol=tol,
                                            max_iter=max_iter, verbose=verbose)
    if sample_weight is None:
        inertia = np.sum((X - centers[labels]) ** 2, dtype=np.float64)
    else:
        sq_distances = np.sum((X - centers[labels]) ** 2, axis=1,
                              dtype=np.float64) * checked_sample_weight
        inertia = np.sum(sq_distances, dtype=np.float64)
    return labels, inertia, centers, n_iter


def _kmeans_single_lloyd(X, sample_weight, n_clusters, max_iter=300,
                         init='k-means++', verbose=False, x_squared_norms=None,
                         random_state=None, tol=1e-4,
                         precompute_distances=True):
    """A single run of k-means, assumes preparation completed prior.

    Parameters
    ----------
    X : array-like of floats, shape (n_samples, n_features)
        The observations to cluster.

    n_clusters : int
        The number of clusters to form as well as the number of
        centroids to generate.

    sample_weight : array-like, shape (n_samples,)
        The weights for each observation in X.

    max_iter : int, optional, default 300
        Maximum number of iterations of the k-means algorithm to run.

    init : {'k-means++', 'random', or ndarray, or a callable}, optional
        Method for initialization, default to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (k, p) and gives
        the initial centers.

        If a callable is passed, it should take arguments X, k and
        and a random state and return an initialization.

    tol : float, optional
        The relative increment in the results before declaring convergence.

    verbose : boolean, optional
        Verbosity mode

    x_squared_norms : array
        Precomputed x_squared_norms.

    precompute_distances : boolean, default: True
        Precompute distances (faster but takes more memory).

    random_state : int, RandomState instance or None (default)
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    centroid : float ndarray with shape (k, n_features)
        Centroids found at the last iteration of k-means.

    label : integer ndarray with shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia : float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    n_iter : int
        Number of iterations run.
    """
    random_state = check_random_state(random_state)

    sample_weight = _check_sample_weight(X, sample_weight)

    best_labels, best_inertia, best_centers = None, None, None
    # init
    centers = _init_centroids(X, n_clusters, init, random_state=random_state,
                              x_squared_norms=x_squared_norms)
    if verbose:
        print("Initialization complete")

    # Allocate memory to store the distances for each sample to its
    # closer center for reallocation in case of ties
    distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype)

    # iterations
    for i in range(max_iter):
        centers_old = centers.copy()
        # labels assignment is also called the E-step of EM
        labels, inertia = \
            _labels_inertia(X, sample_weight, x_squared_norms, centers,
                            precompute_distances=precompute_distances,
                            distances=distances)

        # computation of the means is also called the M-step of EM
        if sp.issparse(X):
            centers = _k_means._centers_sparse(X, sample_weight, labels,
                                               n_clusters, distances)
        else:
            centers = _k_means._centers_dense(X, sample_weight, labels,
                                              n_clusters, distances)

        if verbose:
            print("Iteration %2d, inertia %.3f" % (i, inertia))

        if best_inertia is None or inertia < best_inertia:
            best_labels = labels.copy()
            best_centers = centers.copy()
            best_inertia = inertia

        center_shift_total = squared_norm(centers_old - centers)
        if center_shift_total <= tol:
            if verbose:
                print("Converged at iteration %d: "
                      "center shift %e within tolerance %e"
                      % (i, center_shift_total, tol))
            break

    if center_shift_total > 0:
        # rerun E-step in case of non-convergence so that predicted labels
        # match cluster centers
        best_labels, best_inertia = \
            _labels_inertia(X, sample_weight, x_squared_norms, best_centers,
                            precompute_distances=precompute_distances,
                            distances=distances)

    return best_labels, best_inertia, best_centers, i + 1


def _labels_inertia_precompute_dense(X, sample_weight, x_squared_norms,
                                     centers, distances):
    """Compute labels and inertia using a full distance matrix.

    This will overwrite the 'distances' array in-place.

    Parameters
    ----------
    X : numpy array, shape (n_sample, n_features)
        Input data.

    sample_weight : array-like, shape (n_samples,)
        The weights for each observation in X.

    x_squared_norms : numpy array, shape (n_samples,)
        Precomputed squared norms of X.

    centers : numpy array, shape (n_clusters, n_features)
        Cluster centers which data is assigned to.

    distances : numpy array, shape (n_samples,)
        Pre-allocated array in which distances are stored.

    Returns
    -------
    labels : numpy array, dtype=np.int, shape (n_samples,)
        Indices of clusters that samples are assigned to.

    inertia : float
        Sum of squared distances of samples to their closest cluster center.

    """
    n_samples = X.shape[0]

    # Breakup nearest neighbor distance computation into batches to prevent
    # memory blowup in the case of a large number of samples and clusters.
    # TODO: Once PR #7383 is merged use check_inputs=False in metric_kwargs.
    labels, mindist = pairwise_distances_argmin_min(
        X=X, Y=centers, metric='euclidean', metric_kwargs={'squared': True})
    # cython k-means code assumes int32 inputs
    labels = labels.astype(np.int32)
    if n_samples == distances.shape[0]:
        # distances will be changed in-place
        distances[:] = mindist
    inertia = (mindist * sample_weight).sum()
    return labels, inertia


def _labels_inertia(X, sample_weight, x_squared_norms, centers,
                    precompute_distances=True, distances=None):
    """E step of the K-means EM algorithm.

    Compute the labels and the inertia of the given samples and centers.
    This will compute the distances in-place.

    Parameters
    ----------
    X : float64 array-like or CSR sparse matrix, shape (n_samples, n_features)
        The input samples to assign to the labels.

    sample_weight : array-like, shape (n_samples,)
        The weights for each observation in X.

    x_squared_norms : array, shape (n_samples,)
        Precomputed squared euclidean norm of each data point, to speed up
        computations.

    centers : float array, shape (k, n_features)
        The cluster centers.

    precompute_distances : boolean, default: True
        Precompute distances (faster but takes more memory).

    distances : float array, shape (n_samples,)
        Pre-allocated array to be filled in with each sample's distance
        to the closest center.

    Returns
    -------
    labels : int array of shape(n)
        The resulting assignment

    inertia : float
        Sum of squared distances of samples to their closest cluster center.
    """
    n_samples = X.shape[0]
    sample_weight = _check_sample_weight(X, sample_weight)
    # set the default value of centers to -1 to be able to detect any anomaly
    # easily
    labels = np.full(n_samples, -1, np.int32)
    if distances is None:
        distances = np.zeros(shape=(0,), dtype=X.dtype)
    # distances will be changed in-place
    if sp.issparse(X):
        inertia = _k_means._assign_labels_csr(
            X, sample_weight, x_squared_norms, centers, labels,
            distances=distances)
    else:
        if precompute_distances:
            return _labels_inertia_precompute_dense(X, sample_weight,
                                                    x_squared_norms, centers,
                                                    distances)
        inertia = _k_means._assign_labels_array(
            X, sample_weight, x_squared_norms, centers, labels,
            distances=distances)
    return labels, inertia


def _init_centroids(X, k, init, random_state=None, x_squared_norms=None,
                    init_size=None):
    """Compute the initial centroids

    Parameters
    ----------

    X : array, shape (n_samples, n_features)

    k : int
        number of centroids

    init : {'k-means++', 'random' or ndarray or callable} optional
        Method for initialization

    random_state : int, RandomState instance or None (default)
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    x_squared_norms :  array, shape (n_samples,), optional
        Squared euclidean norm of each data point. Pass it if you have it at
        hands already to avoid it being recomputed here. Default: None

    init_size : int, optional
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than k.

    Returns
    -------
    centers : array, shape(k, n_features)
    """
    random_state = check_random_state(random_state)
    n_samples = X.shape[0]

    if x_squared_norms is None:
        x_squared_norms = row_norms(X, squared=True)

    if init_size is not None and init_size < n_samples:
        if init_size < k:
            warnings.warn(
                "init_size=%d should be larger than k=%d. "
                "Setting it to 3*k" % (init_size, k),
                RuntimeWarning, stacklevel=2)
            init_size = 3 * k
        init_indices = random_state.randint(0, n_samples, init_size)
        X = X[init_indices]
        x_squared_norms = x_squared_norms[init_indices]
        n_samples = X.shape[0]
    elif n_samples < k:
        raise ValueError(
            "n_samples=%d should be larger than k=%d" % (n_samples, k))

    if isinstance(init, string_types) and init == 'k-means++':
        centers = _k_init(X, k, random_state=random_state,
                          x_squared_norms=x_squared_norms)
    elif isinstance(init, string_types) and init == 'random':
        seeds = random_state.permutation(n_samples)[:k]
        centers = X[seeds]
    elif hasattr(init, '__array__'):
        # ensure that the centers have the same dtype as X
        # this is a requirement of fused types of cython
        centers = np.array(init, dtype=X.dtype)
    elif callable(init):
        centers = init(X, k, random_state=random_state)
        centers = np.asarray(centers, dtype=X.dtype)
    else:
        raise ValueError("the init parameter for the k-means should "
                         "be 'k-means++' or 'random' or an ndarray, "
                         "'%s' (type '%s') was passed." % (init, type(init)))

    if sp.issparse(centers):
        centers = centers.toarray()

    _validate_center_shape(X, k, centers)
    return centers


class KMeans(BaseEstimator, ClusterMixin, TransformerMixin):
    """K-Means clustering

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------

    n_clusters : int, optional, default: 8
        The number of clusters to form as well as the number of
        centroids to generate.

    init : {'k-means++', 'random' or an ndarray}
        Method for initialization, defaults to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    n_init : int, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    max_iter : int, default: 300
        Maximum number of iterations of the k-means algorithm for a
        single run.

    tol : float, default: 1e-4
        Relative tolerance with regards to inertia to declare convergence

    precompute_distances : {'auto', True, False}
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances

        False : never precompute distances

    verbose : int, default 0
        Verbosity mode.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    copy_x : boolean, optional
        When pre-computing distances it is more numerically accurate to center
        the data first.  If copy_x is True (default), then the original data is
        not modified, ensuring X is C-contiguous.  If False, the original data
        is modified, and put back before the function returns, but small
        numerical differences may be introduced by subtracting and then adding
        the data mean, in this case it will also not ensure that data is
        C-contiguous which may cause a significant slowdown.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation. This works by computing
        each of the n_init runs in parallel.

        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    algorithm : "auto", "full" or "elkan", default="auto"
        K-means algorithm to use. The classical EM-style algorithm is "full".
        The "elkan" variation is more efficient by using the triangle
        inequality, but currently doesn't support sparse data. "auto" chooses
        "elkan" for dense data and "full" for sparse data.

    Attributes
    ----------
    cluster_centers_ : array, [n_clusters, n_features]
        Coordinates of cluster centers. If the algorithm stops before fully
        converging (see ``tol`` and ``max_iter``), these will not be
        consistent with ``labels_``.

    labels_ :
        Labels of each point

    inertia_ : float
        Sum of squared distances of samples to their closest cluster center.

    n_iter_ : int
        Number of iterations run.

    Examples
    --------

    >>> from sklearn.cluster import KMeans
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [4, 2], [4, 4], [4, 0]])
    >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
    >>> kmeans.labels_
    array([0, 0, 0, 1, 1, 1], dtype=int32)
    >>> kmeans.predict([[0, 0], [4, 4]])
    array([0, 1], dtype=int32)
    >>> kmeans.cluster_centers_
    array([[1., 2.],
           [4., 2.]])

    See also
    --------

    MiniBatchKMeans
        Alternative online implementation that does incremental updates
        of the centers positions using mini-batches.
        For large scale learning (say n_samples > 10k) MiniBatchKMeans is
        probably much faster than the default batch implementation.

    Notes
    ------
    The k-means problem is solved using either Lloyd's or Elkan's algorithm.

    The average complexity is given by O(k n T), were n is the number of
    samples and T is the number of iteration.

    The worst case complexity is given by O(n^(k+2/p)) with
    n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,
    'How slow is the k-means method?' SoCG2006)

    In practice, the k-means algorithm is very fast (one of the fastest
    clustering algorithms available), but it falls in local minima. That's why
    it can be useful to restart it several times.

    If the algorithm stops before fully converging (because of ``tol`` or
    ``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent,
    i.e. the ``cluster_centers_`` will not be the means of the points in each
    cluster. Also, the estimator will reassign ``labels_`` after the last
    iteration to make ``labels_`` consistent with ``predict`` on the training
    set.

    """

    def __init__(self, n_clusters=8, init='k-means++', n_init=10,
                 max_iter=300, tol=1e-4, precompute_distances='auto',
                 verbose=0, random_state=None, copy_x=True,
                 n_jobs=None, algorithm='auto'):

        self.n_clusters = n_clusters
        self.init = init
        self.max_iter = max_iter
        self.tol = tol
        self.precompute_distances = precompute_distances
        self.n_init = n_init
        self.verbose = verbose
        self.random_state = random_state
        self.copy_x = copy_x
        self.n_jobs = n_jobs
        self.algorithm = algorithm

    def _check_test_data(self, X):
        X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES)
        n_samples, n_features = X.shape
        expected_n_features = self.cluster_centers_.shape[1]
        if not n_features == expected_n_features:
            raise ValueError("Incorrect number of features. "
                             "Got %d features, expected %d" % (
                                 n_features, expected_n_features))

        return X

    def fit(self, X, y=None, sample_weight=None):
        """Compute k-means clustering.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Training instances to cluster. It must be noted that the data
            will be converted to C ordering, which will cause a memory
            copy if the given data is not C-contiguous.

        y : Ignored
            not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        """
        random_state = check_random_state(self.random_state)

        self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \
            k_means(
                X, n_clusters=self.n_clusters, sample_weight=sample_weight,
                init=self.init, n_init=self.n_init,
                max_iter=self.max_iter, verbose=self.verbose,
                precompute_distances=self.precompute_distances,
                tol=self.tol, random_state=random_state, copy_x=self.copy_x,
                n_jobs=self.n_jobs, algorithm=self.algorithm,
                return_n_iter=True)
        return self

    def fit_predict(self, X, y=None, sample_weight=None):
        """Compute cluster centers and predict cluster index for each sample.

        Convenience method; equivalent to calling fit(X) followed by
        predict(X).

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        y : Ignored
            not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        return self.fit(X, sample_weight=sample_weight).labels_

    def fit_transform(self, X, y=None, sample_weight=None):
        """Compute clustering and transform X to cluster-distance space.

        Equivalent to fit(X).transform(X), but more efficiently implemented.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        y : Ignored
            not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        Returns
        -------
        X_new : array, shape [n_samples, k]
            X transformed in the new space.
        """
        # Currently, this just skips a copy of the data if it is not in
        # np.array or CSR format already.
        # XXX This skips _check_test_data, which may change the dtype;
        # we should refactor the input validation.
        return self.fit(X, sample_weight=sample_weight)._transform(X)

    def transform(self, X):
        """Transform X to a cluster-distance space.

        In the new space, each dimension is the distance to the cluster
        centers.  Note that even if X is sparse, the array returned by
        `transform` will typically be dense.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        Returns
        -------
        X_new : array, shape [n_samples, k]
            X transformed in the new space.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        return self._transform(X)

    def _transform(self, X):
        """guts of transform method; no input validation"""
        return euclidean_distances(X, self.cluster_centers_)

    def predict(self, X, sample_weight=None):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to predict.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)
        return _labels_inertia(X, sample_weight, x_squared_norms,
                               self.cluster_centers_)[0]

    def score(self, X, y=None, sample_weight=None):
        """Opposite of the value of X on the K-means objective.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data.

        y : Ignored
            not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        Returns
        -------
        score : float
            Opposite of the value of X on the K-means objective.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)
        return -_labels_inertia(X, sample_weight, x_squared_norms,
                                self.cluster_centers_)[1]


def _mini_batch_step(X, sample_weight, x_squared_norms, centers, weight_sums,
                     old_center_buffer, compute_squared_diff,
                     distances, random_reassign=False,
                     random_state=None, reassignment_ratio=.01,
                     verbose=False):
    """Incremental update of the centers for the Minibatch K-Means algorithm.

    Parameters
    ----------

    X : array, shape (n_samples, n_features)
        The original data array.

    sample_weight : array-like, shape (n_samples,)
        The weights for each observation in X.

    x_squared_norms : array, shape (n_samples,)
        Squared euclidean norm of each data point.

    centers : array, shape (k, n_features)
        The cluster centers. This array is MODIFIED IN PLACE

    counts : array, shape (k,)
         The vector in which we keep track of the numbers of elements in a
         cluster. This array is MODIFIED IN PLACE

    distances : array, dtype float, shape (n_samples), optional
        If not None, should be a pre-allocated array that will be used to store
        the distances of each sample to its closest center.
        May not be None when random_reassign is True.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for centroid initialization and to
        pick new clusters amongst observations with uniform probability. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    random_reassign : boolean, optional
        If True, centers with very low counts are randomly reassigned
        to observations.

    reassignment_ratio : float, optional
        Control the fraction of the maximum number of counts for a
        center to be reassigned. A higher value means that low count
        centers are more likely to be reassigned, which means that the
        model will take longer to converge, but should converge in a
        better clustering.

    verbose : bool, optional, default False
        Controls the verbosity.

    compute_squared_diff : bool
        If set to False, the squared diff computation is skipped.

    old_center_buffer : int
        Copy of old centers for monitoring convergence.

    Returns
    -------
    inertia : float
        Sum of squared distances of samples to their closest cluster center.

    squared_diff : numpy array, shape (n_clusters,)
        Squared distances between previous and updated cluster centers.

    """
    # Perform label assignment to nearest centers
    nearest_center, inertia = _labels_inertia(X, sample_weight,
                                              x_squared_norms, centers,
                                              distances=distances)

    if random_reassign and reassignment_ratio > 0:
        random_state = check_random_state(random_state)
        # Reassign clusters that have very low weight
        to_reassign = weight_sums < reassignment_ratio * weight_sums.max()
        # pick at most .5 * batch_size samples as new centers
        if to_reassign.sum() > .5 * X.shape[0]:
            indices_dont_reassign = \
                    np.argsort(weight_sums)[int(.5 * X.shape[0]):]
            to_reassign[indices_dont_reassign] = False
        n_reassigns = to_reassign.sum()
        if n_reassigns:
            # Pick new clusters amongst observations with uniform probability
            new_centers = random_state.choice(X.shape[0], replace=False,
                                              size=n_reassigns)
            if verbose:
                print("[MiniBatchKMeans] Reassigning %i cluster centers."
                      % n_reassigns)

            if sp.issparse(X) and not sp.issparse(centers):
                assign_rows_csr(X, new_centers.astype(np.intp),
                                np.where(to_reassign)[0].astype(np.intp),
                                centers)
            else:
                centers[to_reassign] = X[new_centers]
        # reset counts of reassigned centers, but don't reset them too small
        # to avoid instant reassignment. This is a pretty dirty hack as it
        # also modifies the learning rates.
        weight_sums[to_reassign] = np.min(weight_sums[~to_reassign])

    # implementation for the sparse CSR representation completely written in
    # cython
    if sp.issparse(X):
        return inertia, _k_means._mini_batch_update_csr(
            X, sample_weight, x_squared_norms, centers, weight_sums,
            nearest_center, old_center_buffer, compute_squared_diff)

    # dense variant in mostly numpy (not as memory efficient though)
    k = centers.shape[0]
    squared_diff = 0.0
    for center_idx in range(k):
        # find points from minibatch that are assigned to this center
        center_mask = nearest_center == center_idx
        wsum = sample_weight[center_mask].sum()

        if wsum > 0:
            if compute_squared_diff:
                old_center_buffer[:] = centers[center_idx]

            # inplace remove previous count scaling
            centers[center_idx] *= weight_sums[center_idx]

            # inplace sum with new points members of this cluster
            centers[center_idx] += \
                np.sum(X[center_mask] *
                       sample_weight[center_mask, np.newaxis], axis=0)

            # update the count statistics for this center
            weight_sums[center_idx] += wsum

            # inplace rescale to compute mean of all points (old and new)
            # Note: numpy >= 1.10 does not support '/=' for the following
            # expression for a mixture of int and float (see numpy issue #6464)
            centers[center_idx] = centers[center_idx] / weight_sums[center_idx]

            # update the squared diff if necessary
            if compute_squared_diff:
                diff = centers[center_idx].ravel() - old_center_buffer.ravel()
                squared_diff += np.dot(diff, diff)

    return inertia, squared_diff


def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
                            n_samples, centers_squared_diff, batch_inertia,
                            context, verbose=0):
    """Helper function to encapsulate the early stopping logic"""
    # Normalize inertia to be able to compare values when
    # batch_size changes
    batch_inertia /= model.batch_size
    centers_squared_diff /= model.batch_size

    # Compute an Exponentially Weighted Average of the squared
    # diff to monitor the convergence while discarding
    # minibatch-local stochastic variability:
    # https://en.wikipedia.org/wiki/Moving_average
    ewa_diff = context.get('ewa_diff')
    ewa_inertia = context.get('ewa_inertia')
    if ewa_diff is None:
        ewa_diff = centers_squared_diff
        ewa_inertia = batch_inertia
    else:
        alpha = float(model.batch_size) * 2.0 / (n_samples + 1)
        alpha = 1.0 if alpha > 1.0 else alpha
        ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha
        ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha

    # Log progress to be able to monitor convergence
    if verbose:
        progress_msg = (
            'Minibatch iteration %d/%d:'
            ' mean batch inertia: %f, ewa inertia: %f ' % (
                iteration_idx + 1, n_iter, batch_inertia,
                ewa_inertia))
        print(progress_msg)

    # Early stopping based on absolute tolerance on squared change of
    # centers position (using EWA smoothing)
    if tol > 0.0 and ewa_diff <= tol:
        if verbose:
            print('Converged (small centers change) at iteration %d/%d'
                  % (iteration_idx + 1, n_iter))
        return True

    # Early stopping heuristic due to lack of improvement on smoothed inertia
    ewa_inertia_min = context.get('ewa_inertia_min')
    no_improvement = context.get('no_improvement', 0)
    if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min:
        no_improvement = 0
        ewa_inertia_min = ewa_inertia
    else:
        no_improvement += 1

    if (model.max_no_improvement is not None
            and no_improvement >= model.max_no_improvement):
        if verbose:
            print('Converged (lack of improvement in inertia)'
                  ' at iteration %d/%d'
                  % (iteration_idx + 1, n_iter))
        return True

    # update the convergence context to maintain state across successive calls:
    context['ewa_diff'] = ewa_diff
    context['ewa_inertia'] = ewa_inertia
    context['ewa_inertia_min'] = ewa_inertia_min
    context['no_improvement'] = no_improvement
    return False


class MiniBatchKMeans(KMeans):
    """Mini-Batch K-Means clustering

    Read more in the :ref:`User Guide <mini_batch_kmeans>`.

    Parameters
    ----------

    n_clusters : int, optional, default: 8
        The number of clusters to form as well as the number of
        centroids to generate.

    init : {'k-means++', 'random' or an ndarray}, default: 'k-means++'
        Method for initialization, defaults to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    max_iter : int, optional
        Maximum number of iterations over the complete dataset before
        stopping independently of any early stopping criterion heuristics.

    batch_size : int, optional, default: 100
        Size of the mini batches.

    verbose : boolean, optional
        Verbosity mode.

    compute_labels : boolean, default=True
        Compute label assignment and inertia for the complete dataset
        once the minibatch optimization has converged in fit.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for centroid initialization and
        random reassignment. Use an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    tol : float, default: 0.0
        Control early stopping based on the relative center changes as
        measured by a smoothed, variance-normalized of the mean center
        squared position changes. This early stopping heuristics is
        closer to the one used for the batch variant of the algorithms
        but induces a slight computational and memory overhead over the
        inertia heuristic.

        To disable convergence detection based on normalized center
        change, set tol to 0.0 (default).

    max_no_improvement : int, default: 10
        Control early stopping based on the consecutive number of mini
        batches that does not yield an improvement on the smoothed inertia.

        To disable convergence detection based on inertia, set
        max_no_improvement to None.

    init_size : int, optional, default: 3 * batch_size
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than n_clusters.

    n_init : int, default=3
        Number of random initializations that are tried.
        In contrast to KMeans, the algorithm is only run once, using the
        best of the ``n_init`` initializations as measured by inertia.

    reassignment_ratio : float, default: 0.01
        Control the fraction of the maximum number of counts for a
        center to be reassigned. A higher value means that low count
        centers are more easily reassigned, which means that the
        model will take longer to converge, but should converge in a
        better clustering.

    Attributes
    ----------

    cluster_centers_ : array, [n_clusters, n_features]
        Coordinates of cluster centers

    labels_ :
        Labels of each point (if compute_labels is set to True).

    inertia_ : float
        The value of the inertia criterion associated with the chosen
        partition (if compute_labels is set to True). The inertia is
        defined as the sum of square distances of samples to their nearest
        neighbor.

    Examples
    --------
    >>> from sklearn.cluster import MiniBatchKMeans
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [4, 2], [4, 0], [4, 4],
    ...               [4, 5], [0, 1], [2, 2],
    ...               [3, 2], [5, 5], [1, -1]])
    >>> # manually fit on batches
    >>> kmeans = MiniBatchKMeans(n_clusters=2,
    ...         random_state=0,
    ...         batch_size=6)
    >>> kmeans = kmeans.partial_fit(X[0:6,:])
    >>> kmeans = kmeans.partial_fit(X[6:12,:])
    >>> kmeans.cluster_centers_
    array([[1, 1],
           [3, 4]])
    >>> kmeans.predict([[0, 0], [4, 4]])
    array([0, 1], dtype=int32)
    >>> # fit on the whole data
    >>> kmeans = MiniBatchKMeans(n_clusters=2,
    ...         random_state=0,
    ...         batch_size=6,
    ...         max_iter=10).fit(X)
    >>> kmeans.cluster_centers_
    array([[3.95918367, 2.40816327],
           [1.12195122, 1.3902439 ]])
    >>> kmeans.predict([[0, 0], [4, 4]])
    array([1, 0], dtype=int32)

    See also
    --------

    KMeans
        The classic implementation of the clustering method based on the
        Lloyd's algorithm. It consumes the whole set of input data at each
        iteration.

    Notes
    -----
    See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

    """

    def __init__(self, n_clusters=8, init='k-means++', max_iter=100,
                 batch_size=100, verbose=0, compute_labels=True,
                 random_state=None, tol=0.0, max_no_improvement=10,
                 init_size=None, n_init=3, reassignment_ratio=0.01):

        super(MiniBatchKMeans, self).__init__(
            n_clusters=n_clusters, init=init, max_iter=max_iter,
            verbose=verbose, random_state=random_state, tol=tol, n_init=n_init)

        self.max_no_improvement = max_no_improvement
        self.batch_size = batch_size
        self.compute_labels = compute_labels
        self.init_size = init_size
        self.reassignment_ratio = reassignment_ratio

    def fit(self, X, y=None, sample_weight=None):
        """Compute the centroids on X by chunking it into mini-batches.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Training instances to cluster. It must be noted that the data
            will be converted to C ordering, which will cause a memory copy
            if the given data is not C-contiguous.

        y : Ignored
            not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        """
        random_state = check_random_state(self.random_state)
        X = check_array(X, accept_sparse="csr", order='C',
                        dtype=[np.float64, np.float32])
        n_samples, n_features = X.shape
        if n_samples < self.n_clusters:
            raise ValueError("n_samples=%d should be >= n_clusters=%d"
                             % (n_samples, self.n_clusters))

        sample_weight = _check_sample_weight(X, sample_weight)

        n_init = self.n_init
        if hasattr(self.init, '__array__'):
            self.init = np.ascontiguousarray(self.init, dtype=X.dtype)
            if n_init != 1:
                warnings.warn(
                    'Explicit initial center position passed: '
                    'performing only one init in MiniBatchKMeans instead of '
                    'n_init=%d'
                    % self.n_init, RuntimeWarning, stacklevel=2)
                n_init = 1

        x_squared_norms = row_norms(X, squared=True)

        if self.tol > 0.0:
            tol = _tolerance(X, self.tol)

            # using tol-based early stopping needs the allocation of a
            # dedicated before which can be expensive for high dim data:
            # hence we allocate it outside of the main loop
            old_center_buffer = np.zeros(n_features, dtype=X.dtype)
        else:
            tol = 0.0
            # no need for the center buffer if tol-based early stopping is
            # disabled
            old_center_buffer = np.zeros(0, dtype=X.dtype)

        distances = np.zeros(self.batch_size, dtype=X.dtype)
        n_batches = int(np.ceil(float(n_samples) / self.batch_size))
        n_iter = int(self.max_iter * n_batches)

        init_size = self.init_size
        if init_size is None:
            init_size = 3 * self.batch_size
        if init_size > n_samples:
            init_size = n_samples
        self.init_size_ = init_size

        validation_indices = random_state.randint(0, n_samples, init_size)
        X_valid = X[validation_indices]
        sample_weight_valid = sample_weight[validation_indices]
        x_squared_norms_valid = x_squared_norms[validation_indices]

        # perform several inits with random sub-sets
        best_inertia = None
        for init_idx in range(n_init):
            if self.verbose:
                print("Init %d/%d with method: %s"
                      % (init_idx + 1, n_init, self.init))
            weight_sums = np.zeros(self.n_clusters, dtype=sample_weight.dtype)

            # TODO: once the `k_means` function works with sparse input we
            # should refactor the following init to use it instead.

            # Initialize the centers using only a fraction of the data as we
            # expect n_samples to be very large when using MiniBatchKMeans
            cluster_centers = _init_centroids(
                X, self.n_clusters, self.init,
                random_state=random_state,
                x_squared_norms=x_squared_norms,
                init_size=init_size)

            # Compute the label assignment on the init dataset
            batch_inertia, centers_squared_diff = _mini_batch_step(
                X_valid, sample_weight_valid,
                x_squared_norms[validation_indices], cluster_centers,
                weight_sums, old_center_buffer, False, distances=None,
                verbose=self.verbose)

            # Keep only the best cluster centers across independent inits on
            # the common validation set
            _, inertia = _labels_inertia(X_valid, sample_weight_valid,
                                         x_squared_norms_valid,
                                         cluster_centers)
            if self.verbose:
                print("Inertia for init %d/%d: %f"
                      % (init_idx + 1, n_init, inertia))
            if best_inertia is None or inertia < best_inertia:
                self.cluster_centers_ = cluster_centers
                self.counts_ = weight_sums
                best_inertia = inertia

        # Empty context to be used inplace by the convergence check routine
        convergence_context = {}

        # Perform the iterative optimization until the final convergence
        # criterion
        for iteration_idx in range(n_iter):
            # Sample a minibatch from the full dataset
            minibatch_indices = random_state.randint(
                0, n_samples, self.batch_size)

            # Perform the actual update step on the minibatch data
            batch_inertia, centers_squared_diff = _mini_batch_step(
                X[minibatch_indices], sample_weight[minibatch_indices],
                x_squared_norms[minibatch_indices],
                self.cluster_centers_, self.counts_,
                old_center_buffer, tol > 0.0, distances=distances,
                # Here we randomly choose whether to perform
                # random reassignment: the choice is done as a function
                # of the iteration index, and the minimum number of
                # counts, in order to force this reassignment to happen
                # every once in a while
                random_reassign=((iteration_idx + 1)
                                 % (10 + int(self.counts_.min())) == 0),
                random_state=random_state,
                reassignment_ratio=self.reassignment_ratio,
                verbose=self.verbose)

            # Monitor convergence and do early stopping if necessary
            if _mini_batch_convergence(
                    self, iteration_idx, n_iter, tol, n_samples,
                    centers_squared_diff, batch_inertia, convergence_context,
                    verbose=self.verbose):
                break

        self.n_iter_ = iteration_idx + 1

        if self.compute_labels:
            self.labels_, self.inertia_ = \
                    self._labels_inertia_minibatch(X, sample_weight)

        return self

    def _labels_inertia_minibatch(self, X, sample_weight):
        """Compute labels and inertia using mini batches.

        This is slightly slower than doing everything at once but preventes
        memory errors / segfaults.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        sample_weight : array-like, shape (n_samples,)
            The weights for each observation in X.

        Returns
        -------
        labels : array, shape (n_samples,)
            Cluster labels for each point.

        inertia : float
            Sum of squared distances of points to nearest cluster.
        """
        if self.verbose:
            print('Computing label assignment and total inertia')
        sample_weight = _check_sample_weight(X, sample_weight)
        x_squared_norms = row_norms(X, squared=True)
        slices = gen_batches(X.shape[0], self.batch_size)
        results = [_labels_inertia(X[s], sample_weight[s], x_squared_norms[s],
                                   self.cluster_centers_) for s in slices]
        labels, inertia = zip(*results)
        return np.hstack(labels), np.sum(inertia)

    def partial_fit(self, X, y=None, sample_weight=None):
        """Update k means estimate on a single mini-batch X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Coordinates of the data points to cluster. It must be noted that
            X will be copied if it is not C-contiguous.

        y : Ignored
            not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        """

        X = check_array(X, accept_sparse="csr", order="C")
        n_samples, n_features = X.shape
        if hasattr(self.init, '__array__'):
            self.init = np.ascontiguousarray(self.init, dtype=X.dtype)

        if n_samples == 0:
            return self

        sample_weight = _check_sample_weight(X, sample_weight)

        x_squared_norms = row_norms(X, squared=True)
        self.random_state_ = getattr(self, "random_state_",
                                     check_random_state(self.random_state))
        if (not hasattr(self, 'counts_')
                or not hasattr(self, 'cluster_centers_')):
            # this is the first call partial_fit on this object:
            # initialize the cluster centers
            self.cluster_centers_ = _init_centroids(
                X, self.n_clusters, self.init,
                random_state=self.random_state_,
                x_squared_norms=x_squared_norms, init_size=self.init_size)

            self.counts_ = np.zeros(self.n_clusters,
                                    dtype=sample_weight.dtype)
            random_reassign = False
            distances = None
        else:
            # The lower the minimum count is, the more we do random
            # reassignment, however, we don't want to do random
            # reassignment too often, to allow for building up counts
            random_reassign = self.random_state_.randint(
                10 * (1 + self.counts_.min())) == 0
            distances = np.zeros(X.shape[0], dtype=X.dtype)

        _mini_batch_step(X, sample_weight, x_squared_norms,
                         self.cluster_centers_, self.counts_,
                         np.zeros(0, dtype=X.dtype), 0,
                         random_reassign=random_reassign, distances=distances,
                         random_state=self.random_state_,
                         reassignment_ratio=self.reassignment_ratio,
                         verbose=self.verbose)

        if self.compute_labels:
            self.labels_, self.inertia_ = _labels_inertia(
                X, sample_weight, x_squared_norms, self.cluster_centers_)

        return self

    def predict(self, X, sample_weight=None):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to predict.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None)

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        return self._labels_inertia_minibatch(X, sample_weight)[0]