File: test_dbscan.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (388 lines) | stat: -rw-r--r-- 14,478 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
Tests for DBSCAN clustering algorithm
"""

import pickle

import numpy as np

from scipy.spatial import distance
from scipy import sparse

import pytest

from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_not_in
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster.dbscan_ import DBSCAN
from sklearn.cluster.dbscan_ import dbscan
from sklearn.cluster.tests.common import generate_clustered_data
from sklearn.metrics.pairwise import pairwise_distances


n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)


def test_dbscan_similarity():
    # Tests the DBSCAN algorithm with a similarity array.
    # Parameters chosen specifically for this task.
    eps = 0.15
    min_samples = 10
    # Compute similarities
    D = distance.squareform(distance.pdist(X))
    D /= np.max(D)
    # Compute DBSCAN
    core_samples, labels = dbscan(D, metric="precomputed", eps=eps,
                                  min_samples=min_samples)
    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0)

    assert_equal(n_clusters_1, n_clusters)

    db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples)
    labels = db.fit(D).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_2, n_clusters)


def test_dbscan_feature():
    # Tests the DBSCAN algorithm with a feature vector array.
    # Parameters chosen specifically for this task.
    # Different eps to other test, because distance is not normalised.
    eps = 0.8
    min_samples = 10
    metric = 'euclidean'
    # Compute DBSCAN
    # parameters chosen for task
    core_samples, labels = dbscan(X, metric=metric, eps=eps,
                                  min_samples=min_samples)

    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_1, n_clusters)

    db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples)
    labels = db.fit(X).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_2, n_clusters)


def test_dbscan_sparse():
    core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8,
                                        min_samples=10)
    core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10)
    assert_array_equal(core_dense, core_sparse)
    assert_array_equal(labels_dense, labels_sparse)


@pytest.mark.parametrize('include_self', [False, True])
def test_dbscan_sparse_precomputed(include_self):
    D = pairwise_distances(X)
    nn = NearestNeighbors(radius=.9).fit(X)
    X_ = X if include_self else None
    D_sparse = nn.radius_neighbors_graph(X=X_, mode='distance')
    # Ensure it is sparse not merely on diagonals:
    assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1)
    core_sparse, labels_sparse = dbscan(D_sparse,
                                        eps=.8,
                                        min_samples=10,
                                        metric='precomputed')
    core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10,
                                      metric='precomputed')
    assert_array_equal(core_dense, core_sparse)
    assert_array_equal(labels_dense, labels_sparse)


@pytest.mark.parametrize('use_sparse', [True, False])
@pytest.mark.parametrize('metric', ['precomputed', 'minkowski'])
def test_dbscan_input_not_modified(use_sparse, metric):
    # test that the input is not modified by dbscan
    X = np.random.RandomState(0).rand(10, 10)
    X = sparse.csr_matrix(X) if use_sparse else X
    X_copy = X.copy()
    dbscan(X, metric=metric)

    if use_sparse:
        assert_array_equal(X.toarray(), X_copy.toarray())
    else:
        assert_array_equal(X, X_copy)


def test_dbscan_no_core_samples():
    rng = np.random.RandomState(0)
    X = rng.rand(40, 10)
    X[X < .8] = 0

    for X_ in [X, sparse.csr_matrix(X)]:
        db = DBSCAN(min_samples=6).fit(X_)
        assert_array_equal(db.components_, np.empty((0, X_.shape[1])))
        assert_array_equal(db.labels_, -1)
        assert_equal(db.core_sample_indices_.shape, (0,))


def test_dbscan_callable():
    # Tests the DBSCAN algorithm with a callable metric.
    # Parameters chosen specifically for this task.
    # Different eps to other test, because distance is not normalised.
    eps = 0.8
    min_samples = 10
    # metric is the function reference, not the string key.
    metric = distance.euclidean
    # Compute DBSCAN
    # parameters chosen for task
    core_samples, labels = dbscan(X, metric=metric, eps=eps,
                                  min_samples=min_samples,
                                  algorithm='ball_tree')

    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_1, n_clusters)

    db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples,
                algorithm='ball_tree')
    labels = db.fit(X).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_2, n_clusters)


def test_dbscan_metric_params():
    # Tests that DBSCAN works with the metrics_params argument.
    eps = 0.8
    min_samples = 10
    p = 1

    # Compute DBSCAN with metric_params arg
    db = DBSCAN(metric='minkowski', metric_params={'p': p}, eps=eps,
                min_samples=min_samples, algorithm='ball_tree').fit(X)
    core_sample_1, labels_1 = db.core_sample_indices_, db.labels_

    # Test that sample labels are the same as passing Minkowski 'p' directly
    db = DBSCAN(metric='minkowski', eps=eps, min_samples=min_samples,
                algorithm='ball_tree', p=p).fit(X)
    core_sample_2, labels_2 = db.core_sample_indices_, db.labels_

    assert_array_equal(core_sample_1, core_sample_2)
    assert_array_equal(labels_1, labels_2)

    # Minkowski with p=1 should be equivalent to Manhattan distance
    db = DBSCAN(metric='manhattan', eps=eps, min_samples=min_samples,
                algorithm='ball_tree').fit(X)
    core_sample_3, labels_3 = db.core_sample_indices_, db.labels_

    assert_array_equal(core_sample_1, core_sample_3)
    assert_array_equal(labels_1, labels_3)


def test_dbscan_balltree():
    # Tests the DBSCAN algorithm with balltree for neighbor calculation.
    eps = 0.8
    min_samples = 10

    D = pairwise_distances(X)
    core_samples, labels = dbscan(D, metric="precomputed", eps=eps,
                                  min_samples=min_samples)

    # number of clusters, ignoring noise if present
    n_clusters_1 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_1, n_clusters)

    db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree')
    labels = db.fit(X).labels_

    n_clusters_2 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_2, n_clusters)

    db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree')
    labels = db.fit(X).labels_

    n_clusters_3 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_3, n_clusters)

    db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree')
    labels = db.fit(X).labels_

    n_clusters_4 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_4, n_clusters)

    db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples,
                algorithm='ball_tree')
    labels = db.fit(X).labels_

    n_clusters_5 = len(set(labels)) - int(-1 in labels)
    assert_equal(n_clusters_5, n_clusters)


def test_input_validation():
    # DBSCAN.fit should accept a list of lists.
    X = [[1., 2.], [3., 4.]]
    DBSCAN().fit(X)             # must not raise exception


def test_dbscan_badargs():
    # Test bad argument values: these should all raise ValueErrors
    assert_raises(ValueError,
                  dbscan,
                  X, eps=-1.0)
    assert_raises(ValueError,
                  dbscan,
                  X, algorithm='blah')
    assert_raises(ValueError,
                  dbscan,
                  X, metric='blah')
    assert_raises(ValueError,
                  dbscan,
                  X, leaf_size=-1)
    assert_raises(ValueError,
                  dbscan,
                  X, p=-1)


def test_pickle():
    obj = DBSCAN()
    s = pickle.dumps(obj)
    assert_equal(type(pickle.loads(s)), obj.__class__)


def test_boundaries():
    # ensure min_samples is inclusive of core point
    core, _ = dbscan([[0], [1]], eps=2, min_samples=2)
    assert_in(0, core)
    # ensure eps is inclusive of circumference
    core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2)
    assert_in(0, core)
    core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2)
    assert_not_in(0, core)


def test_weighted_dbscan():
    # ensure sample_weight is validated
    assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2])
    assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4])

    # ensure sample_weight has an effect
    assert_array_equal([], dbscan([[0], [1]], sample_weight=None,
                                  min_samples=6)[0])
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5],
                                  min_samples=6)[0])
    assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5],
                                   min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6],
                                      min_samples=6)[0])

    # points within eps of each other:
    assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5,
                                      sample_weight=[5, 1], min_samples=6)[0])
    # and effect of non-positive and non-integer sample_weight:
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0],
                                  eps=1.5, min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1],
                                      eps=1.5, min_samples=6)[0])
    assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0],
                                      eps=1.5, min_samples=6)[0])
    assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1],
                                  eps=1.5, min_samples=6)[0])

    # for non-negative sample_weight, cores should be identical to repetition
    rng = np.random.RandomState(42)
    sample_weight = rng.randint(0, 5, X.shape[0])
    core1, label1 = dbscan(X, sample_weight=sample_weight)
    assert_equal(len(label1), len(X))

    X_repeated = np.repeat(X, sample_weight, axis=0)
    core_repeated, label_repeated = dbscan(X_repeated)
    core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
    core_repeated_mask[core_repeated] = True
    core_mask = np.zeros(X.shape[0], dtype=bool)
    core_mask[core1] = True
    assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)

    # sample_weight should work with precomputed distance matrix
    D = pairwise_distances(X)
    core3, label3 = dbscan(D, sample_weight=sample_weight,
                           metric='precomputed')
    assert_array_equal(core1, core3)
    assert_array_equal(label1, label3)

    # sample_weight should work with estimator
    est = DBSCAN().fit(X, sample_weight=sample_weight)
    core4 = est.core_sample_indices_
    label4 = est.labels_
    assert_array_equal(core1, core4)
    assert_array_equal(label1, label4)

    est = DBSCAN()
    label5 = est.fit_predict(X, sample_weight=sample_weight)
    core5 = est.core_sample_indices_
    assert_array_equal(core1, core5)
    assert_array_equal(label1, label5)
    assert_array_equal(label1, est.labels_)


@pytest.mark.parametrize('algorithm', ['brute', 'kd_tree', 'ball_tree'])
def test_dbscan_core_samples_toy(algorithm):
    X = [[0], [2], [3], [4], [6], [8], [10]]
    n_samples = len(X)

    # Degenerate case: every sample is a core sample, either with its own
    # cluster or including other close core samples.
    core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
                                  min_samples=1)
    assert_array_equal(core_samples, np.arange(n_samples))
    assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4])

    # With eps=1 and min_samples=2 only the 3 samples from the denser area
    # are core samples. All other points are isolated and considered noise.
    core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
                                  min_samples=2)
    assert_array_equal(core_samples, [1, 2, 3])
    assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])

    # Only the sample in the middle of the dense area is core. Its two
    # neighbors are edge samples. Remaining samples are noise.
    core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
                                  min_samples=3)
    assert_array_equal(core_samples, [2])
    assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])

    # It's no longer possible to extract core samples with eps=1:
    # everything is noise.
    core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
                                  min_samples=4)
    assert_array_equal(core_samples, [])
    assert_array_equal(labels, np.full(n_samples, -1.))


def test_dbscan_precomputed_metric_with_degenerate_input_arrays():
    # see https://github.com/scikit-learn/scikit-learn/issues/4641 for
    # more details
    X = np.eye(10)
    labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_
    assert_equal(len(set(labels)), 1)

    X = np.zeros((10, 10))
    labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_
    assert_equal(len(set(labels)), 1)


def test_dbscan_precomputed_metric_with_initial_rows_zero():
    # sample matrix with initial two row all zero
    ar = np.array([
        [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
        [0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
        [0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.3],
        [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1],
        [0.0, 0.0, 0.0, 0.0, 0.3, 0.1, 0.0]
    ])
    matrix = sparse.csr_matrix(ar)
    labels = DBSCAN(eps=0.2, metric='precomputed',
                    min_samples=2).fit(matrix).labels_
    assert_array_equal(labels, [-1, -1,  0,  0,  0,  1,  1])