1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
"""Testing for K-means"""
import sys
import numpy as np
from scipy import sparse as sp
import pytest
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import SkipTest
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import if_safe_multiprocessing_with_blas
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.validation import _num_samples
from sklearn.base import clone
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.extmath import row_norms
from sklearn.metrics.cluster import v_measure_score
from sklearn.cluster import KMeans, k_means
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster.k_means_ import _labels_inertia
from sklearn.cluster.k_means_ import _mini_batch_step
from sklearn.datasets.samples_generator import make_blobs
from sklearn.externals.six.moves import cStringIO as StringIO
from sklearn.metrics.cluster import homogeneity_score
# non centered, sparse centers to check the
centers = np.array([
[0.0, 5.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 4.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 5.0, 1.0],
])
n_samples = 100
n_clusters, n_features = centers.shape
X, true_labels = make_blobs(n_samples=n_samples, centers=centers,
cluster_std=1., random_state=42)
X_csr = sp.csr_matrix(X)
@pytest.mark.parametrize("representation, algo",
[('dense', 'full'),
('dense', 'elkan'),
('sparse', 'full')])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_kmeans_results(representation, algo, dtype):
# cheks that kmeans works as intended
array_constr = {'dense': np.array, 'sparse': sp.csr_matrix}[representation]
X = array_constr([[0, 0], [0.5, 0], [0.5, 1], [1, 1]], dtype=dtype)
sample_weight = [3, 1, 1, 3] # will be rescaled to [1.5, 0.5, 0.5, 1.5]
init_centers = np.array([[0, 0], [1, 1]], dtype=dtype)
expected_labels = [0, 0, 1, 1]
expected_inertia = 0.1875
expected_centers = np.array([[0.125, 0], [0.875, 1]], dtype=dtype)
expected_n_iter = 2
kmeans = KMeans(n_clusters=2, n_init=1, init=init_centers, algorithm=algo)
kmeans.fit(X, sample_weight=sample_weight)
assert_array_equal(kmeans.labels_, expected_labels)
assert_almost_equal(kmeans.inertia_, expected_inertia)
assert_array_almost_equal(kmeans.cluster_centers_, expected_centers)
assert kmeans.n_iter_ == expected_n_iter
@pytest.mark.parametrize('distribution', ['normal', 'blobs'])
def test_elkan_results(distribution):
# check that results are identical between lloyd and elkan algorithms
rnd = np.random.RandomState(0)
if distribution is 'normal':
X = rnd.normal(size=(50, 10))
else:
X, _ = make_blobs(random_state=rnd)
km_full = KMeans(algorithm='full', n_clusters=5, random_state=0, n_init=1)
km_elkan = KMeans(algorithm='elkan', n_clusters=5,
random_state=0, n_init=1)
km_full.fit(X)
km_elkan.fit(X)
assert_array_almost_equal(km_elkan.cluster_centers_,
km_full.cluster_centers_)
assert_array_equal(km_elkan.labels_, km_full.labels_)
def test_labels_assignment_and_inertia():
# pure numpy implementation as easily auditable reference gold
# implementation
rng = np.random.RandomState(42)
noisy_centers = centers + rng.normal(size=centers.shape)
labels_gold = np.full(n_samples, -1, dtype=np.int)
mindist = np.empty(n_samples)
mindist.fill(np.infty)
for center_id in range(n_clusters):
dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1)
labels_gold[dist < mindist] = center_id
mindist = np.minimum(dist, mindist)
inertia_gold = mindist.sum()
assert (mindist >= 0.0).all()
assert (labels_gold != -1).all()
sample_weight = None
# perform label assignment using the dense array input
x_squared_norms = (X ** 2).sum(axis=1)
labels_array, inertia_array = _labels_inertia(
X, sample_weight, x_squared_norms, noisy_centers)
assert_array_almost_equal(inertia_array, inertia_gold)
assert_array_equal(labels_array, labels_gold)
# perform label assignment using the sparse CSR input
x_squared_norms_from_csr = row_norms(X_csr, squared=True)
labels_csr, inertia_csr = _labels_inertia(
X_csr, sample_weight, x_squared_norms_from_csr, noisy_centers)
assert_array_almost_equal(inertia_csr, inertia_gold)
assert_array_equal(labels_csr, labels_gold)
def test_minibatch_update_consistency():
# Check that dense and sparse minibatch update give the same results
rng = np.random.RandomState(42)
old_centers = centers + rng.normal(size=centers.shape)
new_centers = old_centers.copy()
new_centers_csr = old_centers.copy()
weight_sums = np.zeros(new_centers.shape[0], dtype=np.double)
weight_sums_csr = np.zeros(new_centers.shape[0], dtype=np.double)
x_squared_norms = (X ** 2).sum(axis=1)
x_squared_norms_csr = row_norms(X_csr, squared=True)
buffer = np.zeros(centers.shape[1], dtype=np.double)
buffer_csr = np.zeros(centers.shape[1], dtype=np.double)
# extract a small minibatch
X_mb = X[:10]
X_mb_csr = X_csr[:10]
x_mb_squared_norms = x_squared_norms[:10]
x_mb_squared_norms_csr = x_squared_norms_csr[:10]
sample_weight_mb = np.ones(X_mb.shape[0], dtype=np.double)
# step 1: compute the dense minibatch update
old_inertia, incremental_diff = _mini_batch_step(
X_mb, sample_weight_mb, x_mb_squared_norms, new_centers, weight_sums,
buffer, 1, None, random_reassign=False)
assert_greater(old_inertia, 0.0)
# compute the new inertia on the same batch to check that it decreased
labels, new_inertia = _labels_inertia(
X_mb, sample_weight_mb, x_mb_squared_norms, new_centers)
assert_greater(new_inertia, 0.0)
assert_less(new_inertia, old_inertia)
# check that the incremental difference computation is matching the
# final observed value
effective_diff = np.sum((new_centers - old_centers) ** 2)
assert_almost_equal(incremental_diff, effective_diff)
# step 2: compute the sparse minibatch update
old_inertia_csr, incremental_diff_csr = _mini_batch_step(
X_mb_csr, sample_weight_mb, x_mb_squared_norms_csr, new_centers_csr,
weight_sums_csr, buffer_csr, 1, None, random_reassign=False)
assert_greater(old_inertia_csr, 0.0)
# compute the new inertia on the same batch to check that it decreased
labels_csr, new_inertia_csr = _labels_inertia(
X_mb_csr, sample_weight_mb, x_mb_squared_norms_csr, new_centers_csr)
assert_greater(new_inertia_csr, 0.0)
assert_less(new_inertia_csr, old_inertia_csr)
# check that the incremental difference computation is matching the
# final observed value
effective_diff = np.sum((new_centers_csr - old_centers) ** 2)
assert_almost_equal(incremental_diff_csr, effective_diff)
# step 3: check that sparse and dense updates lead to the same results
assert_array_equal(labels, labels_csr)
assert_array_almost_equal(new_centers, new_centers_csr)
assert_almost_equal(incremental_diff, incremental_diff_csr)
assert_almost_equal(old_inertia, old_inertia_csr)
assert_almost_equal(new_inertia, new_inertia_csr)
def _check_fitted_model(km):
# check that the number of clusters centers and distinct labels match
# the expectation
centers = km.cluster_centers_
assert_equal(centers.shape, (n_clusters, n_features))
labels = km.labels_
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(km.inertia_, 0.0)
# check error on dataset being too small
assert_raise_message(ValueError, "n_samples=1 should be >= n_clusters=%d"
% km.n_clusters, km.fit, [[0., 1.]])
def test_k_means_new_centers():
# Explore the part of the code where a new center is reassigned
X = np.array([[0, 0, 1, 1],
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 1, 0, 0]])
labels = [0, 1, 2, 1, 1, 2]
bad_centers = np.array([[+0, 1, 0, 0],
[.2, 0, .2, .2],
[+0, 0, 0, 0]])
km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10,
random_state=1)
for this_X in (X, sp.coo_matrix(X)):
km.fit(this_X)
this_labels = km.labels_
# Reorder the labels so that the first instance is in cluster 0,
# the second in cluster 1, ...
this_labels = np.unique(this_labels, return_index=True)[1][this_labels]
np.testing.assert_array_equal(this_labels, labels)
@if_safe_multiprocessing_with_blas
def test_k_means_plus_plus_init_2_jobs():
if sys.version_info[:2] < (3, 4):
raise SkipTest(
"Possible multi-process bug with some BLAS under Python < 3.4")
km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2,
random_state=42).fit(X)
_check_fitted_model(km)
def test_k_means_precompute_distances_flag():
# check that a warning is raised if the precompute_distances flag is not
# supported
km = KMeans(precompute_distances="wrong")
assert_raises(ValueError, km.fit, X)
def test_k_means_plus_plus_init_not_precomputed():
km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42,
precompute_distances=False).fit(X)
_check_fitted_model(km)
def test_k_means_random_init_not_precomputed():
km = KMeans(init="random", n_clusters=n_clusters, random_state=42,
precompute_distances=False).fit(X)
_check_fitted_model(km)
@pytest.mark.parametrize('data', [X, X_csr], ids=['dense', 'sparse'])
@pytest.mark.parametrize('init', ['random', 'k-means++', centers.copy()])
def test_k_means_init(data, init):
km = KMeans(init=init, n_clusters=n_clusters, random_state=42, n_init=1)
km.fit(data)
_check_fitted_model(km)
def test_k_means_n_init():
rnd = np.random.RandomState(0)
X = rnd.normal(size=(40, 2))
# two regression tests on bad n_init argument
# previous bug: n_init <= 0 threw non-informative TypeError (#3858)
assert_raises_regex(ValueError, "n_init", KMeans(n_init=0).fit, X)
assert_raises_regex(ValueError, "n_init", KMeans(n_init=-1).fit, X)
@pytest.mark.parametrize('Class', [KMeans, MiniBatchKMeans])
def test_k_means_explicit_init_shape(Class):
# test for sensible errors when giving explicit init
# with wrong number of features or clusters
rnd = np.random.RandomState(0)
X = rnd.normal(size=(40, 3))
# mismatch of number of features
km = Class(n_init=1, init=X[:, :2], n_clusters=len(X))
msg = "does not match the number of features of the data"
assert_raises_regex(ValueError, msg, km.fit, X)
# for callable init
km = Class(n_init=1,
init=lambda X_, k, random_state: X_[:, :2],
n_clusters=len(X))
assert_raises_regex(ValueError, msg, km.fit, X)
# mismatch of number of clusters
msg = "does not match the number of clusters"
km = Class(n_init=1, init=X[:2, :], n_clusters=3)
assert_raises_regex(ValueError, msg, km.fit, X)
# for callable init
km = Class(n_init=1,
init=lambda X_, k, random_state: X_[:2, :],
n_clusters=3)
assert_raises_regex(ValueError, msg, km.fit, X)
def test_k_means_fortran_aligned_data():
# Check the KMeans will work well, even if X is a fortran-aligned data.
X = np.asfortranarray([[0, 0], [0, 1], [0, 1]])
centers = np.array([[0, 0], [0, 1]])
labels = np.array([0, 1, 1])
km = KMeans(n_init=1, init=centers, precompute_distances=False,
random_state=42, n_clusters=2)
km.fit(X)
assert_array_almost_equal(km.cluster_centers_, centers)
assert_array_equal(km.labels_, labels)
@pytest.mark.parametrize('algo', ['full', 'elkan'])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('constructor', [np.asarray, sp.csr_matrix])
@pytest.mark.parametrize('seed, max_iter, tol', [
(0, 2, 1e-7), # strict non-convergence
(1, 2, 1e-1), # loose non-convergence
(3, 300, 1e-7), # strict convergence
(4, 300, 1e-1), # loose convergence
])
def test_k_means_fit_predict(algo, dtype, constructor, seed, max_iter, tol):
# check that fit.predict gives same result as fit_predict
# There's a very small chance of failure with elkan on unstructured dataset
# because predict method uses fast euclidean distances computation which
# may cause small numerical instabilities.
if sys.platform == "darwin":
pytest.xfail(
"Known failures on MacOS, See "
"https://github.com/scikit-learn/scikit-learn/issues/12644")
if not (algo == 'elkan' and constructor is sp.csr_matrix):
rng = np.random.RandomState(seed)
X = make_blobs(n_samples=1000, n_features=10, centers=10,
random_state=rng)[0].astype(dtype, copy=False)
X = constructor(X)
kmeans = KMeans(algorithm=algo, n_clusters=10, random_state=seed,
tol=tol, max_iter=max_iter, n_jobs=1)
labels_1 = kmeans.fit(X).predict(X)
labels_2 = kmeans.fit_predict(X)
assert_array_equal(labels_1, labels_2)
def test_mb_kmeans_verbose():
mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters,
random_state=42, verbose=1)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
mb_k_means.fit(X)
finally:
sys.stdout = old_stdout
def test_minibatch_init_with_large_k():
mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20)
# Check that a warning is raised, as the number clusters is larger
# than the init_size
assert_warns(RuntimeWarning, mb_k_means.fit, X)
def test_minibatch_k_means_init_multiple_runs_with_explicit_centers():
mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters,
random_state=42, n_init=10)
assert_warns(RuntimeWarning, mb_k_means.fit, X)
@pytest.mark.parametrize('data', [X, X_csr], ids=['dense', 'sparse'])
@pytest.mark.parametrize('init', ["random", 'k-means++', centers.copy()])
def test_minibatch_k_means_init(data, init):
mb_k_means = MiniBatchKMeans(init=init, n_clusters=n_clusters,
random_state=42, n_init=10)
mb_k_means.fit(data)
_check_fitted_model(mb_k_means)
def test_minibatch_sensible_reassign_fit():
# check if identical initial clusters are reassigned
# also a regression test for when there are more desired reassignments than
# samples.
zeroed_X, true_labels = make_blobs(n_samples=100, centers=5,
cluster_std=1., random_state=42)
zeroed_X[::2, :] = 0
mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42,
init="random")
mb_k_means.fit(zeroed_X)
# there should not be too many exact zero cluster centers
assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10)
# do the same with batch-size > X.shape[0] (regression test)
mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201,
random_state=42, init="random")
mb_k_means.fit(zeroed_X)
# there should not be too many exact zero cluster centers
assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10)
def test_minibatch_sensible_reassign_partial_fit():
zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5,
cluster_std=1., random_state=42)
zeroed_X[::2, :] = 0
mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random")
for i in range(100):
mb_k_means.partial_fit(zeroed_X)
# there should not be too many exact zero cluster centers
assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10)
def test_minibatch_reassign():
# Give a perfect initialization, but a large reassignment_ratio,
# as a result all the centers should be reassigned and the model
# should no longer be good
sample_weight = np.ones(X.shape[0], dtype=X.dtype)
for this_X in (X, X_csr):
mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100,
random_state=42)
mb_k_means.fit(this_X)
score_before = mb_k_means.score(this_X)
try:
old_stdout = sys.stdout
sys.stdout = StringIO()
# Turn on verbosity to smoke test the display code
_mini_batch_step(this_X, sample_weight, (X ** 2).sum(axis=1),
mb_k_means.cluster_centers_,
mb_k_means.counts_,
np.zeros(X.shape[1], np.double),
False, distances=np.zeros(X.shape[0]),
random_reassign=True, random_state=42,
reassignment_ratio=1, verbose=True)
finally:
sys.stdout = old_stdout
assert_greater(score_before, mb_k_means.score(this_X))
# Give a perfect initialization, with a small reassignment_ratio,
# no center should be reassigned
for this_X in (X, X_csr):
mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100,
init=centers.copy(),
random_state=42, n_init=1)
mb_k_means.fit(this_X)
clusters_before = mb_k_means.cluster_centers_
# Turn on verbosity to smoke test the display code
_mini_batch_step(this_X, sample_weight, (X ** 2).sum(axis=1),
mb_k_means.cluster_centers_,
mb_k_means.counts_,
np.zeros(X.shape[1], np.double),
False, distances=np.zeros(X.shape[0]),
random_reassign=True, random_state=42,
reassignment_ratio=1e-15)
assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_)
def test_minibatch_with_many_reassignments():
# Test for the case that the number of clusters to reassign is bigger
# than the batch_size
n_samples = 550
rnd = np.random.RandomState(42)
X = rnd.uniform(size=(n_samples, 10))
# Check that the fit works if n_clusters is bigger than the batch_size.
# Run the test with 550 clusters and 550 samples, because it turned out
# that this values ensure that the number of clusters to reassign
# is always bigger than the batch_size
n_clusters = 550
MiniBatchKMeans(n_clusters=n_clusters,
batch_size=100,
init_size=n_samples,
random_state=42).fit(X)
def test_sparse_mb_k_means_callable_init():
def test_init(X, k, random_state):
return centers
# Small test to check that giving the wrong number of centers
# raises a meaningful error
msg = "does not match the number of clusters"
assert_raises_regex(ValueError, msg, MiniBatchKMeans(init=test_init,
random_state=42).fit,
X_csr)
# Now check that the fit actually works
mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init,
random_state=42).fit(X_csr)
_check_fitted_model(mb_k_means)
def test_mini_batch_k_means_random_init_partial_fit():
km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42)
# use the partial_fit API for online learning
for X_minibatch in np.array_split(X, 10):
km.partial_fit(X_minibatch)
# compute the labeling on the complete dataset
labels = km.predict(X)
assert_equal(v_measure_score(true_labels, labels), 1.0)
def test_minibatch_default_init_size():
mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters,
batch_size=10, random_state=42,
n_init=1).fit(X)
assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size)
_check_fitted_model(mb_k_means)
def test_minibatch_tol():
mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10,
random_state=42, tol=.01).fit(X)
_check_fitted_model(mb_k_means)
def test_minibatch_set_init_size():
mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters,
init_size=666, random_state=42,
n_init=1).fit(X)
assert_equal(mb_k_means.init_size, 666)
assert_equal(mb_k_means.init_size_, n_samples)
_check_fitted_model(mb_k_means)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_k_means_invalid_init(Estimator):
km = Estimator(init="invalid", n_init=1, n_clusters=n_clusters)
assert_raises(ValueError, km.fit, X)
def test_k_means_copyx():
# Check if copy_x=False returns nearly equal X after de-centering.
my_X = X.copy()
km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42)
km.fit(my_X)
_check_fitted_model(km)
# check if my_X is centered
assert_array_almost_equal(my_X, X)
def test_k_means_non_collapsed():
# Check k_means with a bad initialization does not yield a singleton
# Starting with bad centers that are quickly ignored should not
# result in a repositioning of the centers to the center of mass that
# would lead to collapsed centers which in turns make the clustering
# dependent of the numerical unstabilities.
my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]])
array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]])
km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1)
km.fit(my_X)
# centers must not been collapsed
assert_equal(len(np.unique(km.labels_)), 3)
centers = km.cluster_centers_
assert np.linalg.norm(centers[0] - centers[1]) >= 0.1
assert np.linalg.norm(centers[0] - centers[2]) >= 0.1
assert np.linalg.norm(centers[1] - centers[2]) >= 0.1
@pytest.mark.parametrize('algo', ['full', 'elkan'])
def test_score(algo):
# Check that fitting k-means with multiple inits gives better score
km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42, n_init=1,
algorithm=algo)
s1 = km1.fit(X).score(X)
km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42, n_init=1,
algorithm=algo)
s2 = km2.fit(X).score(X)
assert s2 > s1
@pytest.mark.parametrize('Estimator', [KMeans, MiniBatchKMeans])
@pytest.mark.parametrize('data', [X, X_csr], ids=['dense', 'sparse'])
@pytest.mark.parametrize('init', ['random', 'k-means++', centers.copy()])
def test_predict(Estimator, data, init):
k_means = Estimator(n_clusters=n_clusters, init=init,
n_init=10, random_state=0).fit(data)
# sanity check: re-predict labeling for training set samples
assert_array_equal(k_means.predict(data), k_means.labels_)
# sanity check: predict centroid labels
pred = k_means.predict(k_means.cluster_centers_)
assert_array_equal(pred, np.arange(n_clusters))
# re-predict labels for training set using fit_predict
pred = k_means.fit_predict(data)
assert_array_equal(pred, k_means.labels_)
@pytest.mark.parametrize('init', ['random', 'k-means++', centers.copy()])
def test_predict_minibatch_dense_sparse(init):
# check that models trained on sparse input also works for dense input at
# predict time
mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init=init,
n_init=10, random_state=0).fit(X_csr)
assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_)
def test_int_input():
X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]]
for dtype in [np.int32, np.int64]:
X_int = np.array(X_list, dtype=dtype)
X_int_csr = sp.csr_matrix(X_int)
init_int = X_int[:2]
fitted_models = [
KMeans(n_clusters=2).fit(X_int),
KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int),
# mini batch kmeans is very unstable on such a small dataset hence
# we use many inits
MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int),
MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(
X_int_csr),
MiniBatchKMeans(n_clusters=2, batch_size=2,
init=init_int, n_init=1).fit(X_int),
MiniBatchKMeans(n_clusters=2, batch_size=2,
init=init_int, n_init=1).fit(X_int_csr),
]
for km in fitted_models:
assert_equal(km.cluster_centers_.dtype, np.float64)
expected_labels = [0, 1, 1, 0, 0, 1]
scores = np.array([v_measure_score(expected_labels, km.labels_)
for km in fitted_models])
assert_array_almost_equal(scores, np.ones(scores.shape[0]))
def test_transform():
km = KMeans(n_clusters=n_clusters)
km.fit(X)
X_new = km.transform(km.cluster_centers_)
for c in range(n_clusters):
assert_equal(X_new[c, c], 0)
for c2 in range(n_clusters):
if c != c2:
assert_greater(X_new[c, c2], 0)
def test_fit_transform():
X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X)
X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X)
assert_array_almost_equal(X1, X2)
@pytest.mark.parametrize('algo', ['full', 'elkan'])
def test_predict_equal_labels(algo):
km = KMeans(random_state=13, n_jobs=1, n_init=1, max_iter=1,
algorithm=algo)
km.fit(X)
assert_array_equal(km.predict(X), km.labels_)
def test_full_vs_elkan():
km1 = KMeans(algorithm='full', random_state=13).fit(X)
km2 = KMeans(algorithm='elkan', random_state=13).fit(X)
assert homogeneity_score(km1.predict(X), km2.predict(X)) == 1.0
def test_n_init():
# Check that increasing the number of init increases the quality
n_runs = 5
n_init_range = [1, 5, 10]
inertia = np.zeros((len(n_init_range), n_runs))
for i, n_init in enumerate(n_init_range):
for j in range(n_runs):
km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init,
random_state=j).fit(X)
inertia[i, j] = km.inertia_
inertia = inertia.mean(axis=1)
failure_msg = ("Inertia %r should be decreasing"
" when n_init is increasing.") % list(inertia)
for i in range(len(n_init_range) - 1):
assert inertia[i] >= inertia[i + 1], failure_msg
def test_k_means_function():
# test calling the k_means function directly
# catch output
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters,
sample_weight=None,
verbose=True)
finally:
sys.stdout = old_stdout
centers = cluster_centers
assert_equal(centers.shape, (n_clusters, n_features))
labels = labels
assert_equal(np.unique(labels).shape[0], n_clusters)
# check that the labels assignment are perfect (up to a permutation)
assert_equal(v_measure_score(true_labels, labels), 1.0)
assert_greater(inertia, 0.0)
# check warning when centers are passed
assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters,
sample_weight=None, init=centers)
# to many clusters desired
assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1,
sample_weight=None)
# kmeans for algorithm='elkan' raises TypeError on sparse matrix
assert_raise_message(TypeError, "algorithm='elkan' not supported for "
"sparse input X", k_means, X=X_csr, n_clusters=2,
sample_weight=None, algorithm="elkan")
def test_x_squared_norms_init_centroids():
# Test that x_squared_norms can be None in _init_centroids
from sklearn.cluster.k_means_ import _init_centroids
X_norms = np.sum(X**2, axis=1)
precompute = _init_centroids(
X, 3, "k-means++", random_state=0, x_squared_norms=X_norms)
assert_array_almost_equal(
precompute,
_init_centroids(X, 3, "k-means++", random_state=0))
def test_max_iter_error():
km = KMeans(max_iter=-1)
assert_raise_message(ValueError, 'Number of iterations should be',
km.fit, X)
@pytest.mark.parametrize('Estimator', [KMeans, MiniBatchKMeans])
@pytest.mark.parametrize('is_sparse', [False, True])
def test_float_precision(Estimator, is_sparse):
estimator = Estimator(n_init=1, random_state=30)
inertia = {}
X_new = {}
centers = {}
for dtype in [np.float64, np.float32]:
if is_sparse:
X_test = sp.csr_matrix(X_csr, dtype=dtype)
else:
X_test = X.astype(dtype)
estimator.fit(X_test)
# dtype of cluster centers has to be the dtype of the input
# data
assert_equal(estimator.cluster_centers_.dtype, dtype)
inertia[dtype] = estimator.inertia_
X_new[dtype] = estimator.transform(X_test)
centers[dtype] = estimator.cluster_centers_
# ensure the extracted row is a 2d array
assert_equal(estimator.predict(X_test[:1]),
estimator.labels_[0])
if hasattr(estimator, 'partial_fit'):
estimator.partial_fit(X_test[0:3])
# dtype of cluster centers has to stay the same after
# partial_fit
assert_equal(estimator.cluster_centers_.dtype, dtype)
# compare arrays with low precision since the difference between
# 32 and 64 bit sometimes makes a difference up to the 4th decimal
# place
assert_array_almost_equal(inertia[np.float32], inertia[np.float64],
decimal=4)
assert_array_almost_equal(X_new[np.float32], X_new[np.float64],
decimal=4)
assert_array_almost_equal(centers[np.float32], centers[np.float64],
decimal=4)
def test_k_means_init_centers():
# This test is used to check KMeans won't mutate the user provided input
# array silently even if input data and init centers have the same type
X_small = np.array([[1.1, 1.1], [-7.5, -7.5], [-1.1, -1.1], [7.5, 7.5]])
init_centers = np.array([[0.0, 0.0], [5.0, 5.0], [-5.0, -5.0]])
for dtype in [np.int32, np.int64, np.float32, np.float64]:
X_test = dtype(X_small)
init_centers_test = dtype(init_centers)
assert_array_equal(init_centers, init_centers_test)
km = KMeans(init=init_centers_test, n_clusters=3, n_init=1)
km.fit(X_test)
assert_equal(False, np.may_share_memory(km.cluster_centers_,
init_centers))
@pytest.mark.parametrize("data", [X, X_csr], ids=["dense", "sparse"])
def test_k_means_init_fitted_centers(data):
# Get a local optimum
centers = KMeans(n_clusters=3).fit(X).cluster_centers_
# Fit starting from a local optimum shouldn't change the solution
new_centers = KMeans(n_clusters=3, init=centers,
n_init=1).fit(X).cluster_centers_
assert_array_almost_equal(centers, new_centers)
def test_sparse_validate_centers():
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
# Get a local optimum
centers = KMeans(n_clusters=4).fit(X).cluster_centers_
# Test that a ValueError is raised for validate_center_shape
classifier = KMeans(n_clusters=3, init=centers, n_init=1)
msg = r"The shape of the initial centers \(\(4L?, 4L?\)\) " \
"does not match the number of clusters 3"
assert_raises_regex(ValueError, msg, classifier.fit, X)
def test_less_centers_than_unique_points():
X = np.asarray([[0, 0],
[0, 1],
[1, 0],
[1, 0]]) # last point is duplicated
km = KMeans(n_clusters=4).fit(X)
# only three distinct points, so only three clusters
# can have points assigned to them
assert_equal(set(km.labels_), set(range(3)))
# k_means should warn that fewer labels than cluster
# centers have been used
msg = ("Number of distinct clusters (3) found smaller than "
"n_clusters (4). Possibly due to duplicate points in X.")
assert_warns_message(ConvergenceWarning, msg, k_means, X,
sample_weight=None, n_clusters=4)
def _sort_centers(centers):
return np.sort(centers, axis=0)
def test_weighted_vs_repeated():
# a sample weight of N should yield the same result as an N-fold
# repetition of the sample
rng = np.random.RandomState(0)
sample_weight = rng.randint(1, 5, size=n_samples)
X_repeat = np.repeat(X, sample_weight, axis=0)
estimators = [KMeans(init="k-means++", n_clusters=n_clusters,
random_state=42),
KMeans(init="random", n_clusters=n_clusters,
random_state=42),
KMeans(init=centers.copy(), n_clusters=n_clusters,
random_state=42),
MiniBatchKMeans(n_clusters=n_clusters, batch_size=10,
random_state=42)]
for estimator in estimators:
est_weighted = clone(estimator).fit(X, sample_weight=sample_weight)
est_repeated = clone(estimator).fit(X_repeat)
repeated_labels = np.repeat(est_weighted.labels_, sample_weight)
assert_almost_equal(v_measure_score(est_repeated.labels_,
repeated_labels), 1.0)
if not isinstance(estimator, MiniBatchKMeans):
assert_almost_equal(_sort_centers(est_weighted.cluster_centers_),
_sort_centers(est_repeated.cluster_centers_))
def test_unit_weights_vs_no_weights():
# not passing any sample weights should be equivalent
# to all weights equal to one
sample_weight = np.ones(n_samples)
for estimator in [KMeans(n_clusters=n_clusters, random_state=42),
MiniBatchKMeans(n_clusters=n_clusters, random_state=42)]:
est_1 = clone(estimator).fit(X)
est_2 = clone(estimator).fit(X, sample_weight=sample_weight)
assert_almost_equal(v_measure_score(est_1.labels_, est_2.labels_), 1.0)
assert_almost_equal(_sort_centers(est_1.cluster_centers_),
_sort_centers(est_2.cluster_centers_))
def test_scaled_weights():
# scaling all sample weights by a common factor
# shouldn't change the result
sample_weight = np.ones(n_samples)
for estimator in [KMeans(n_clusters=n_clusters, random_state=42),
MiniBatchKMeans(n_clusters=n_clusters, random_state=42)]:
est_1 = clone(estimator).fit(X)
est_2 = clone(estimator).fit(X, sample_weight=0.5*sample_weight)
assert_almost_equal(v_measure_score(est_1.labels_, est_2.labels_), 1.0)
assert_almost_equal(_sort_centers(est_1.cluster_centers_),
_sort_centers(est_2.cluster_centers_))
def test_sample_weight_length():
# check that an error is raised when passing sample weights
# with an incompatible shape
km = KMeans(n_clusters=n_clusters, random_state=42)
assert_raises_regex(ValueError, r'len\(sample_weight\)', km.fit, X,
sample_weight=np.ones(2))
def test_check_sample_weight():
from sklearn.cluster.k_means_ import _check_sample_weight
sample_weight = None
checked_sample_weight = _check_sample_weight(X, sample_weight)
assert_equal(_num_samples(X), _num_samples(checked_sample_weight))
assert_almost_equal(checked_sample_weight.sum(), _num_samples(X))
assert_equal(X.dtype, checked_sample_weight.dtype)
def test_iter_attribute():
# Regression test on bad n_iter_ value. Previous bug n_iter_ was one off
# it's right value (#11340).
estimator = KMeans(algorithm="elkan", max_iter=1)
estimator.fit(np.random.rand(10, 10))
assert estimator.n_iter_ == 1
|