File: test_spectral.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (207 lines) | stat: -rw-r--r-- 7,970 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""Testing for Spectral Clustering methods"""
from __future__ import division

import numpy as np
from scipy import sparse

import pytest

from sklearn.externals.six.moves import cPickle

from sklearn.utils import check_random_state
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_warns_message

from sklearn.cluster import SpectralClustering, spectral_clustering
from sklearn.cluster.spectral import discretize
from sklearn.feature_extraction import img_to_graph
from sklearn.metrics import pairwise_distances
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel
from sklearn.datasets.samples_generator import make_blobs

try:
    from pyamg import smoothed_aggregation_solver  # noqa
    amg_loaded = True
except ImportError:
    amg_loaded = False


@pytest.mark.parametrize('eigen_solver', ('arpack', 'lobpcg'))
@pytest.mark.parametrize('assign_labels', ('kmeans', 'discretize'))
def test_spectral_clustering(eigen_solver, assign_labels):
    S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
                  [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
                  [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
                  [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
                  [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
                  [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
                  [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]])

    for mat in (S, sparse.csr_matrix(S)):
        model = SpectralClustering(random_state=0, n_clusters=2,
                                   affinity='precomputed',
                                   eigen_solver=eigen_solver,
                                   assign_labels=assign_labels
                                   ).fit(mat)
        labels = model.labels_
        if labels[0] == 0:
            labels = 1 - labels

        assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1

        model_copy = cPickle.loads(cPickle.dumps(model))
        assert model_copy.n_clusters == model.n_clusters
        assert model_copy.eigen_solver == model.eigen_solver
        assert_array_equal(model_copy.labels_, model.labels_)


def test_spectral_unknown_mode():
    # Test that SpectralClustering fails with an unknown mode set.
    centers = np.array([
        [0., 0., 0.],
        [10., 10., 10.],
        [20., 20., 20.],
    ])
    X, true_labels = make_blobs(n_samples=100, centers=centers,
                                cluster_std=1., random_state=42)
    D = pairwise_distances(X)  # Distance matrix
    S = np.max(D) - D  # Similarity matrix
    S = sparse.coo_matrix(S)
    assert_raises(ValueError, spectral_clustering, S, n_clusters=2,
                  random_state=0, eigen_solver="<unknown>")


def test_spectral_unknown_assign_labels():
    # Test that SpectralClustering fails with an unknown assign_labels set.
    centers = np.array([
        [0., 0., 0.],
        [10., 10., 10.],
        [20., 20., 20.],
    ])
    X, true_labels = make_blobs(n_samples=100, centers=centers,
                                cluster_std=1., random_state=42)
    D = pairwise_distances(X)  # Distance matrix
    S = np.max(D) - D  # Similarity matrix
    S = sparse.coo_matrix(S)
    assert_raises(ValueError, spectral_clustering, S, n_clusters=2,
                  random_state=0, assign_labels="<unknown>")


def test_spectral_clustering_sparse():
    X, y = make_blobs(n_samples=20, random_state=0,
                      centers=[[1, 1], [-1, -1]], cluster_std=0.01)

    S = rbf_kernel(X, gamma=1)
    S = np.maximum(S - 1e-4, 0)
    S = sparse.coo_matrix(S)

    labels = SpectralClustering(random_state=0, n_clusters=2,
                                affinity='precomputed').fit(S).labels_
    assert adjusted_rand_score(y, labels) == 1


def test_affinities():
    # Note: in the following, random_state has been selected to have
    # a dataset that yields a stable eigen decomposition both when built
    # on OSX and Linux
    X, y = make_blobs(n_samples=20, random_state=0,
                      centers=[[1, 1], [-1, -1]], cluster_std=0.01
                     )
    # nearest neighbors affinity
    sp = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',
                            random_state=0)
    assert_warns_message(UserWarning, 'not fully connected', sp.fit, X)
    assert adjusted_rand_score(y, sp.labels_) == 1

    sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0)
    labels = sp.fit(X).labels_
    assert adjusted_rand_score(y, labels) == 1

    X = check_random_state(10).rand(10, 5) * 10

    kernels_available = kernel_metrics()
    for kern in kernels_available:
        # Additive chi^2 gives a negative similarity matrix which
        # doesn't make sense for spectral clustering
        if kern != 'additive_chi2':
            sp = SpectralClustering(n_clusters=2, affinity=kern,
                                    random_state=0)
            labels = sp.fit(X).labels_
            assert (X.shape[0],) == labels.shape

    sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1,
                            random_state=0)
    labels = sp.fit(X).labels_
    assert (X.shape[0],) == labels.shape

    def histogram(x, y, **kwargs):
        # Histogram kernel implemented as a callable.
        assert_equal(kwargs, {})    # no kernel_params that we didn't ask for
        return np.minimum(x, y).sum()

    sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0)
    labels = sp.fit(X).labels_
    assert (X.shape[0],) == labels.shape

    # raise error on unknown affinity
    sp = SpectralClustering(n_clusters=2, affinity='<unknown>')
    assert_raises(ValueError, sp.fit, X)


@pytest.mark.parametrize('n_samples', [50, 100, 150, 500])
def test_discretize(n_samples):
    # Test the discretize using a noise assignment matrix
    random_state = np.random.RandomState(seed=8)
    for n_class in range(2, 10):
        # random class labels
        y_true = random_state.randint(0, n_class + 1, n_samples)
        y_true = np.array(y_true, np.float)
        # noise class assignment matrix
        y_indicator = sparse.coo_matrix((np.ones(n_samples),
                                         (np.arange(n_samples),
                                          y_true)),
                                        shape=(n_samples,
                                               n_class + 1))
        y_true_noisy = (y_indicator.toarray()
                        + 0.1 * random_state.randn(n_samples,
                                                   n_class + 1))
        y_pred = discretize(y_true_noisy, random_state)
        assert adjusted_rand_score(y_true, y_pred) > 0.8


def test_spectral_clustering_with_arpack_amg_solvers():
    # Test that spectral_clustering is the same for arpack and amg solver
    # Based on toy example from plot_segmentation_toy.py

    # a small two coin image
    x, y = np.indices((40, 40))

    center1, center2 = (14, 12), (20, 25)
    radius1, radius2 = 8, 7

    circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
    circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2

    circles = circle1 | circle2
    mask = circles.copy()
    img = circles.astype(float)

    graph = img_to_graph(img, mask=mask)
    graph.data = np.exp(-graph.data / graph.data.std())

    labels_arpack = spectral_clustering(
        graph, n_clusters=2, eigen_solver='arpack', random_state=0)

    assert len(np.unique(labels_arpack)) == 2

    if amg_loaded:
        labels_amg = spectral_clustering(
            graph, n_clusters=2, eigen_solver='amg', random_state=0)
        assert adjusted_rand_score(labels_arpack, labels_amg) == 1
    else:
        assert_raises(
            ValueError, spectral_clustering,
            graph, n_clusters=2, eigen_solver='amg', random_state=0)