1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
"""
The :mod:`sklearn.compose._column_transformer` module implements utilities
to work with heterogeneous data and to apply different transformers to
different columns.
"""
# Author: Andreas Mueller
# Joris Van den Bossche
# License: BSD
from __future__ import division
from itertools import chain
import numpy as np
import warnings
from scipy import sparse
from ..base import clone, TransformerMixin
from ..utils._joblib import Parallel, delayed
from ..externals import six
from ..pipeline import _fit_transform_one, _transform_one, _name_estimators
from ..preprocessing import FunctionTransformer
from ..utils import Bunch
from ..utils.metaestimators import _BaseComposition
from ..utils.validation import check_array, check_is_fitted
__all__ = ['ColumnTransformer', 'make_column_transformer']
_ERR_MSG_1DCOLUMN = ("1D data passed to a transformer that expects 2D data. "
"Try to specify the column selection as a list of one "
"item instead of a scalar.")
class ColumnTransformer(_BaseComposition, TransformerMixin):
"""Applies transformers to columns of an array or pandas DataFrame.
EXPERIMENTAL: some behaviors may change between releases without
deprecation.
This estimator allows different columns or column subsets of the input
to be transformed separately and the features generated by each transformer
will be concatenated to form a single feature space.
This is useful for heterogeneous or columnar data, to combine several
feature extraction mechanisms or transformations into a single transformer.
Read more in the :ref:`User Guide <column_transformer>`.
.. versionadded:: 0.20
Parameters
----------
transformers : list of tuples
List of (name, transformer, column(s)) tuples specifying the
transformer objects to be applied to subsets of the data.
name : string
Like in Pipeline and FeatureUnion, this allows the transformer and
its parameters to be set using ``set_params`` and searched in grid
search.
transformer : estimator or {'passthrough', 'drop'}
Estimator must support `fit` and `transform`. Special-cased
strings 'drop' and 'passthrough' are accepted as well, to
indicate to drop the columns or to pass them through untransformed,
respectively.
column(s) : string or int, array-like of string or int, slice, \
boolean mask array or callable
Indexes the data on its second axis. Integers are interpreted as
positional columns, while strings can reference DataFrame columns
by name. A scalar string or int should be used where
``transformer`` expects X to be a 1d array-like (vector),
otherwise a 2d array will be passed to the transformer.
A callable is passed the input data `X` and can return any of the
above.
remainder : {'drop', 'passthrough'} or estimator, default 'drop'
By default, only the specified columns in `transformers` are
transformed and combined in the output, and the non-specified
columns are dropped. (default of ``'drop'``).
By specifying ``remainder='passthrough'``, all remaining columns that
were not specified in `transformers` will be automatically passed
through. This subset of columns is concatenated with the output of
the transformers.
By setting ``remainder`` to be an estimator, the remaining
non-specified columns will use the ``remainder`` estimator. The
estimator must support `fit` and `transform`.
sparse_threshold : float, default = 0.3
If the output of the different transfromers contains sparse matrices,
these will be stacked as a sparse matrix if the overall density is
lower than this value. Use ``sparse_threshold=0`` to always return
dense. When the transformed output consists of all dense data, the
stacked result will be dense, and this keyword will be ignored.
n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
transformer_weights : dict, optional
Multiplicative weights for features per transformer. The output of the
transformer is multiplied by these weights. Keys are transformer names,
values the weights.
Attributes
----------
transformers_ : list
The collection of fitted transformers as tuples of
(name, fitted_transformer, column). `fitted_transformer` can be an
estimator, 'drop', or 'passthrough'. In case there were no columns
selected, this will be the unfitted transformer.
If there are remaining columns, the final element is a tuple of the
form:
('remainder', transformer, remaining_columns) corresponding to the
``remainder`` parameter. If there are remaining columns, then
``len(transformers_)==len(transformers)+1``, otherwise
``len(transformers_)==len(transformers)``.
named_transformers_ : Bunch object, a dictionary with attribute access
Read-only attribute to access any transformer by given name.
Keys are transformer names and values are the fitted transformer
objects.
sparse_output_ : boolean
Boolean flag indicating wether the output of ``transform`` is a
sparse matrix or a dense numpy array, which depends on the output
of the individual transformers and the `sparse_threshold` keyword.
Notes
-----
The order of the columns in the transformed feature matrix follows the
order of how the columns are specified in the `transformers` list.
Columns of the original feature matrix that are not specified are
dropped from the resulting transformed feature matrix, unless specified
in the `passthrough` keyword. Those columns specified with `passthrough`
are added at the right to the output of the transformers.
See also
--------
sklearn.compose.make_column_transformer : convenience function for
combining the outputs of multiple transformer objects applied to
column subsets of the original feature space.
Examples
--------
>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.preprocessing import Normalizer
>>> ct = ColumnTransformer(
... [("norm1", Normalizer(norm='l1'), [0, 1]),
... ("norm2", Normalizer(norm='l1'), slice(2, 4))])
>>> X = np.array([[0., 1., 2., 2.],
... [1., 1., 0., 1.]])
>>> # Normalizer scales each row of X to unit norm. A separate scaling
>>> # is applied for the two first and two last elements of each
>>> # row independently.
>>> ct.fit_transform(X) # doctest: +NORMALIZE_WHITESPACE
array([[0. , 1. , 0.5, 0.5],
[0.5, 0.5, 0. , 1. ]])
"""
def __init__(self, transformers, remainder='drop', sparse_threshold=0.3,
n_jobs=None, transformer_weights=None):
self.transformers = transformers
self.remainder = remainder
self.sparse_threshold = sparse_threshold
self.n_jobs = n_jobs
self.transformer_weights = transformer_weights
@property
def _transformers(self):
"""
Internal list of transformer only containing the name and
transformers, dropping the columns. This is for the implementation
of get_params via BaseComposition._get_params which expects lists
of tuples of len 2.
"""
return [(name, trans) for name, trans, _ in self.transformers]
@_transformers.setter
def _transformers(self, value):
self.transformers = [
(name, trans, col) for ((name, trans), (_, _, col))
in zip(value, self.transformers)]
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : boolean, optional
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
return self._get_params('_transformers', deep=deep)
def set_params(self, **kwargs):
"""Set the parameters of this estimator.
Valid parameter keys can be listed with ``get_params()``.
Returns
-------
self
"""
self._set_params('_transformers', **kwargs)
return self
def _iter(self, fitted=False, replace_strings=False):
"""
Generate (name, trans, column, weight) tuples.
If fitted=True, use the fitted transformers, else use the
user specified transformers updated with converted column names
and potentially appended with transformer for remainder.
"""
if fitted:
transformers = self.transformers_
else:
# interleave the validated column specifiers
transformers = [
(name, trans, column) for (name, trans, _), column
in zip(self.transformers, self._columns)
]
# add transformer tuple for remainder
if self._remainder[2] is not None:
transformers = chain(transformers, [self._remainder])
get_weight = (self.transformer_weights or {}).get
for name, trans, column in transformers:
if replace_strings:
# replace 'passthrough' with identity transformer and
# skip in case of 'drop'
if trans == 'passthrough':
trans = FunctionTransformer(
validate=False, accept_sparse=True,
check_inverse=False)
elif trans == 'drop':
continue
elif _is_empty_column_selection(column):
continue
yield (name, trans, column, get_weight(name))
def _validate_transformers(self):
if not self.transformers:
return
names, transformers, _ = zip(*self.transformers)
# validate names
self._validate_names(names)
# validate estimators
for t in transformers:
if t in ('drop', 'passthrough'):
continue
if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
hasattr(t, "transform")):
raise TypeError("All estimators should implement fit and "
"transform, or can be 'drop' or 'passthrough' "
"specifiers. '%s' (type %s) doesn't." %
(t, type(t)))
def _validate_column_callables(self, X):
"""
Converts callable column specifications.
"""
columns = []
for _, _, column in self.transformers:
if callable(column):
column = column(X)
columns.append(column)
self._columns = columns
def _validate_remainder(self, X):
"""
Validates ``remainder`` and defines ``_remainder`` targeting
the remaining columns.
"""
is_transformer = ((hasattr(self.remainder, "fit")
or hasattr(self.remainder, "fit_transform"))
and hasattr(self.remainder, "transform"))
if (self.remainder not in ('drop', 'passthrough')
and not is_transformer):
raise ValueError(
"The remainder keyword needs to be one of 'drop', "
"'passthrough', or estimator. '%s' was passed instead" %
self.remainder)
n_columns = X.shape[1]
cols = []
for columns in self._columns:
cols.extend(_get_column_indices(X, columns))
remaining_idx = sorted(list(set(range(n_columns)) - set(cols))) or None
self._remainder = ('remainder', self.remainder, remaining_idx)
@property
def named_transformers_(self):
"""Access the fitted transformer by name.
Read-only attribute to access any transformer by given name.
Keys are transformer names and values are the fitted transformer
objects.
"""
# Use Bunch object to improve autocomplete
return Bunch(**dict([(name, trans) for name, trans, _
in self.transformers_]))
def get_feature_names(self):
"""Get feature names from all transformers.
Returns
-------
feature_names : list of strings
Names of the features produced by transform.
"""
check_is_fitted(self, 'transformers_')
feature_names = []
for name, trans, _, _ in self._iter(fitted=True):
if trans == 'drop':
continue
elif trans == 'passthrough':
raise NotImplementedError(
"get_feature_names is not yet supported when using "
"a 'passthrough' transformer.")
elif not hasattr(trans, 'get_feature_names'):
raise AttributeError("Transformer %s (type %s) does not "
"provide get_feature_names."
% (str(name), type(trans).__name__))
feature_names.extend([name + "__" + f for f in
trans.get_feature_names()])
return feature_names
def _update_fitted_transformers(self, transformers):
# transformers are fitted; excludes 'drop' cases
fitted_transformers = iter(transformers)
transformers_ = []
for name, old, column, _ in self._iter():
if old == 'drop':
trans = 'drop'
elif old == 'passthrough':
# FunctionTransformer is present in list of transformers,
# so get next transformer, but save original string
next(fitted_transformers)
trans = 'passthrough'
elif _is_empty_column_selection(column):
trans = old
else:
trans = next(fitted_transformers)
transformers_.append((name, trans, column))
# sanity check that transformers is exhausted
assert not list(fitted_transformers)
self.transformers_ = transformers_
def _validate_output(self, result):
"""
Ensure that the output of each transformer is 2D. Otherwise
hstack can raise an error or produce incorrect results.
"""
names = [name for name, _, _, _ in self._iter(fitted=True,
replace_strings=True)]
for Xs, name in zip(result, names):
if not getattr(Xs, 'ndim', 0) == 2:
raise ValueError(
"The output of the '{0}' transformer should be 2D (scipy "
"matrix, array, or pandas DataFrame).".format(name))
def _fit_transform(self, X, y, func, fitted=False):
"""
Private function to fit and/or transform on demand.
Return value (transformers and/or transformed X data) depends
on the passed function.
``fitted=True`` ensures the fitted transformers are used.
"""
try:
return Parallel(n_jobs=self.n_jobs)(
delayed(func)(clone(trans) if not fitted else trans,
_get_column(X, column), y, weight)
for _, trans, column, weight in self._iter(
fitted=fitted, replace_strings=True))
except ValueError as e:
if "Expected 2D array, got 1D array instead" in str(e):
raise ValueError(_ERR_MSG_1DCOLUMN)
else:
raise
def fit(self, X, y=None):
"""Fit all transformers using X.
Parameters
----------
X : array-like or DataFrame of shape [n_samples, n_features]
Input data, of which specified subsets are used to fit the
transformers.
y : array-like, shape (n_samples, ...), optional
Targets for supervised learning.
Returns
-------
self : ColumnTransformer
This estimator
"""
# we use fit_transform to make sure to set sparse_output_ (for which we
# need the transformed data) to have consistent output type in predict
self.fit_transform(X, y=y)
return self
def fit_transform(self, X, y=None):
"""Fit all transformers, transform the data and concatenate results.
Parameters
----------
X : array-like or DataFrame of shape [n_samples, n_features]
Input data, of which specified subsets are used to fit the
transformers.
y : array-like, shape (n_samples, ...), optional
Targets for supervised learning.
Returns
-------
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the
sum of n_components (output dimension) over transformers. If
any result is a sparse matrix, everything will be converted to
sparse matrices.
"""
X = _check_X(X)
self._validate_transformers()
self._validate_column_callables(X)
self._validate_remainder(X)
result = self._fit_transform(X, y, _fit_transform_one)
if not result:
self._update_fitted_transformers([])
# All transformers are None
return np.zeros((X.shape[0], 0))
Xs, transformers = zip(*result)
# determine if concatenated output will be sparse or not
if any(sparse.issparse(X) for X in Xs):
nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs)
total = sum(X.shape[0] * X.shape[1] if sparse.issparse(X)
else X.size for X in Xs)
density = nnz / total
self.sparse_output_ = density < self.sparse_threshold
else:
self.sparse_output_ = False
self._update_fitted_transformers(transformers)
self._validate_output(Xs)
return self._hstack(list(Xs))
def transform(self, X):
"""Transform X separately by each transformer, concatenate results.
Parameters
----------
X : array-like or DataFrame of shape [n_samples, n_features]
The data to be transformed by subset.
Returns
-------
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the
sum of n_components (output dimension) over transformers. If
any result is a sparse matrix, everything will be converted to
sparse matrices.
"""
check_is_fitted(self, 'transformers_')
X = _check_X(X)
Xs = self._fit_transform(X, None, _transform_one, fitted=True)
self._validate_output(Xs)
if not Xs:
# All transformers are None
return np.zeros((X.shape[0], 0))
return self._hstack(list(Xs))
def _hstack(self, Xs):
"""Stacks Xs horizontally.
This allows subclasses to control the stacking behavior, while reusing
everything else from ColumnTransformer.
Parameters
----------
Xs : List of numpy arrays, sparse arrays, or DataFrames
"""
if self.sparse_output_:
try:
# since all columns should be numeric before stacking them
# in a sparse matrix, `check_array` is used for the
# dtype conversion if necessary.
converted_Xs = [check_array(X,
accept_sparse=True,
force_all_finite=False)
for X in Xs]
except ValueError:
raise ValueError("For a sparse output, all columns should"
" be a numeric or convertible to a numeric.")
return sparse.hstack(converted_Xs).tocsr()
else:
Xs = [f.toarray() if sparse.issparse(f) else f for f in Xs]
return np.hstack(Xs)
def _check_X(X):
"""Use check_array only on lists and other non-array-likes / sparse"""
if hasattr(X, '__array__') or sparse.issparse(X):
return X
return check_array(X, force_all_finite='allow-nan', dtype=np.object)
def _check_key_type(key, superclass):
"""
Check that scalar, list or slice is of a certain type.
This is only used in _get_column and _get_column_indices to check
if the `key` (column specification) is fully integer or fully string-like.
Parameters
----------
key : scalar, list, slice, array-like
The column specification to check
superclass : int or six.string_types
The type for which to check the `key`
"""
if isinstance(key, superclass):
return True
if isinstance(key, slice):
return (isinstance(key.start, (superclass, type(None))) and
isinstance(key.stop, (superclass, type(None))))
if isinstance(key, list):
return all(isinstance(x, superclass) for x in key)
if hasattr(key, 'dtype'):
if superclass is int:
return key.dtype.kind == 'i'
else:
# superclass = six.string_types
return key.dtype.kind in ('O', 'U', 'S')
return False
def _get_column(X, key):
"""
Get feature column(s) from input data X.
Supported input types (X): numpy arrays, sparse arrays and DataFrames
Supported key types (key):
- scalar: output is 1D
- lists, slices, boolean masks: output is 2D
- callable that returns any of the above
Supported key data types:
- integer or boolean mask (positional):
- supported for arrays, sparse matrices and dataframes
- string (key-based):
- only supported for dataframes
- So no keys other than strings are allowed (while in principle you
can use any hashable object as key).
"""
# check whether we have string column names or integers
if _check_key_type(key, int):
column_names = False
elif _check_key_type(key, six.string_types):
column_names = True
elif hasattr(key, 'dtype') and np.issubdtype(key.dtype, np.bool_):
# boolean mask
column_names = False
if hasattr(X, 'loc'):
# pandas boolean masks don't work with iloc, so take loc path
column_names = True
else:
raise ValueError("No valid specification of the columns. Only a "
"scalar, list or slice of all integers or all "
"strings, or boolean mask is allowed")
if column_names:
if hasattr(X, 'loc'):
# pandas dataframes
return X.loc[:, key]
else:
raise ValueError("Specifying the columns using strings is only "
"supported for pandas DataFrames")
else:
if hasattr(X, 'iloc'):
# pandas dataframes
return X.iloc[:, key]
else:
# numpy arrays, sparse arrays
return X[:, key]
def _get_column_indices(X, key):
"""
Get feature column indices for input data X and key.
For accepted values of `key`, see the docstring of _get_column
"""
n_columns = X.shape[1]
if _check_key_type(key, int):
if isinstance(key, int):
return [key]
elif isinstance(key, slice):
return list(range(n_columns)[key])
else:
return list(key)
elif _check_key_type(key, six.string_types):
try:
all_columns = list(X.columns)
except AttributeError:
raise ValueError("Specifying the columns using strings is only "
"supported for pandas DataFrames")
if isinstance(key, six.string_types):
columns = [key]
elif isinstance(key, slice):
start, stop = key.start, key.stop
if start is not None:
start = all_columns.index(start)
if stop is not None:
# pandas indexing with strings is endpoint included
stop = all_columns.index(stop) + 1
else:
stop = n_columns + 1
return list(range(n_columns)[slice(start, stop)])
else:
columns = list(key)
return [all_columns.index(col) for col in columns]
elif hasattr(key, 'dtype') and np.issubdtype(key.dtype, np.bool_):
# boolean mask
return list(np.arange(n_columns)[key])
else:
raise ValueError("No valid specification of the columns. Only a "
"scalar, list or slice of all integers or all "
"strings, or boolean mask is allowed")
def _is_empty_column_selection(column):
"""
Return True if the column selection is empty (empty list or all-False
boolean array).
"""
if hasattr(column, 'dtype') and np.issubdtype(column.dtype, np.bool_):
return not column.any()
elif hasattr(column, '__len__'):
return len(column) == 0
else:
return False
def _validate_transformers(transformers):
"""Checks if given transformers are valid.
This is a helper function to support the deprecated tuple order.
XXX Remove in v0.22
"""
if not transformers:
return True
for t in transformers:
if isinstance(t, six.string_types) and t in ('drop', 'passthrough'):
continue
if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
hasattr(t, "transform")):
return False
return True
def _is_deprecated_tuple_order(tuples):
"""Checks if the input follows the deprecated tuple order.
Returns
-------
Returns true if (transformer, columns) is not a valid assumption for the
input, but (columns, transformer) is valid. The latter is deprecated and
its support will stop in v0.22.
XXX Remove in v0.22
"""
transformers, columns = zip(*tuples)
if (not _validate_transformers(transformers)
and _validate_transformers(columns)):
return True
return False
def _get_transformer_list(estimators):
"""
Construct (name, trans, column) tuples from list
"""
message = ('`make_column_transformer` now expects (transformer, columns) '
'as input tuples instead of (columns, transformer). This '
'has been introduced in v0.20.1. `make_column_transformer` '
'will stop accepting the deprecated (columns, transformer) '
'order in v0.22.')
transformers, columns = zip(*estimators)
# XXX Remove in v0.22
if _is_deprecated_tuple_order(estimators):
transformers, columns = columns, transformers
warnings.warn(message, DeprecationWarning)
names, _ = zip(*_name_estimators(transformers))
transformer_list = list(zip(names, transformers, columns))
return transformer_list
def make_column_transformer(*transformers, **kwargs):
"""Construct a ColumnTransformer from the given transformers.
This is a shorthand for the ColumnTransformer constructor; it does not
require, and does not permit, naming the transformers. Instead, they will
be given names automatically based on their types. It also does not allow
weighting with ``transformer_weights``.
Parameters
----------
*transformers : tuples of transformers and column selections
remainder : {'drop', 'passthrough'} or estimator, default 'drop'
By default, only the specified columns in `transformers` are
transformed and combined in the output, and the non-specified
columns are dropped. (default of ``'drop'``).
By specifying ``remainder='passthrough'``, all remaining columns that
were not specified in `transformers` will be automatically passed
through. This subset of columns is concatenated with the output of
the transformers.
By setting ``remainder`` to be an estimator, the remaining
non-specified columns will use the ``remainder`` estimator. The
estimator must support `fit` and `transform`.
sparse_threshold : float, default = 0.3
If the transformed output consists of a mix of sparse and dense data,
it will be stacked as a sparse matrix if the density is lower than this
value. Use ``sparse_threshold=0`` to always return dense.
When the transformed output consists of all sparse or all dense data,
the stacked result will be sparse or dense, respectively, and this
keyword will be ignored.
n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
ct : ColumnTransformer
See also
--------
sklearn.compose.ColumnTransformer : Class that allows combining the
outputs of multiple transformer objects used on column subsets
of the data into a single feature space.
Examples
--------
>>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
>>> from sklearn.compose import make_column_transformer
>>> make_column_transformer(
... (StandardScaler(), ['numerical_column']),
... (OneHotEncoder(), ['categorical_column']))
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
transformer_weights=None,
transformers=[('standardscaler',
StandardScaler(...),
['numerical_column']),
('onehotencoder',
OneHotEncoder(...),
['categorical_column'])])
"""
# transformer_weights keyword is not passed through because the user
# would need to know the automatically generated names of the transformers
n_jobs = kwargs.pop('n_jobs', None)
remainder = kwargs.pop('remainder', 'drop')
sparse_threshold = kwargs.pop('sparse_threshold', 0.3)
if kwargs:
raise TypeError('Unknown keyword arguments: "{}"'
.format(list(kwargs.keys())[0]))
transformer_list = _get_transformer_list(transformers)
return ColumnTransformer(transformer_list, n_jobs=n_jobs,
remainder=remainder,
sparse_threshold=sparse_threshold)
|