1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
# Authors: Andreas Mueller <andreas.mueller@columbia.edu>
# Guillaume Lemaitre <guillaume.lemaitre@inria.fr>
# License: BSD 3 clause
import warnings
import numpy as np
from ..base import BaseEstimator, RegressorMixin, clone
from ..utils.validation import check_is_fitted
from ..utils import check_array, safe_indexing
from ..preprocessing import FunctionTransformer
__all__ = ['TransformedTargetRegressor']
class TransformedTargetRegressor(BaseEstimator, RegressorMixin):
"""Meta-estimator to regress on a transformed target.
Useful for applying a non-linear transformation in regression
problems. This transformation can be given as a Transformer such as the
QuantileTransformer or as a function and its inverse such as ``log`` and
``exp``.
The computation during ``fit`` is::
regressor.fit(X, func(y))
or::
regressor.fit(X, transformer.transform(y))
The computation during ``predict`` is::
inverse_func(regressor.predict(X))
or::
transformer.inverse_transform(regressor.predict(X))
Read more in the :ref:`User Guide <preprocessing_targets>`.
Parameters
----------
regressor : object, default=LinearRegression()
Regressor object such as derived from ``RegressorMixin``. This
regressor will automatically be cloned each time prior to fitting.
transformer : object, default=None
Estimator object such as derived from ``TransformerMixin``. Cannot be
set at the same time as ``func`` and ``inverse_func``. If
``transformer`` is ``None`` as well as ``func`` and ``inverse_func``,
the transformer will be an identity transformer. Note that the
transformer will be cloned during fitting. Also, the transformer is
restricting ``y`` to be a numpy array.
func : function, optional
Function to apply to ``y`` before passing to ``fit``. Cannot be set at
the same time as ``transformer``. The function needs to return a
2-dimensional array. If ``func`` is ``None``, the function used will be
the identity function.
inverse_func : function, optional
Function to apply to the prediction of the regressor. Cannot be set at
the same time as ``transformer`` as well. The function needs to return
a 2-dimensional array. The inverse function is used to return
predictions to the same space of the original training labels.
check_inverse : bool, default=True
Whether to check that ``transform`` followed by ``inverse_transform``
or ``func`` followed by ``inverse_func`` leads to the original targets.
Attributes
----------
regressor_ : object
Fitted regressor.
transformer_ : object
Transformer used in ``fit`` and ``predict``.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.compose import TransformedTargetRegressor
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
... func=np.log, inverse_func=np.exp)
>>> X = np.arange(4).reshape(-1, 1)
>>> y = np.exp(2 * X).ravel()
>>> tt.fit(X, y) # doctest: +ELLIPSIS
TransformedTargetRegressor(...)
>>> tt.score(X, y)
1.0
>>> tt.regressor_.coef_
array([2.])
Notes
-----
Internally, the target ``y`` is always converted into a 2-dimensional array
to be used by scikit-learn transformers. At the time of prediction, the
output will be reshaped to a have the same number of dimensions as ``y``.
See :ref:`examples/compose/plot_transformed_target.py
<sphx_glr_auto_examples_compose_plot_transformed_target.py>`.
"""
def __init__(self, regressor=None, transformer=None,
func=None, inverse_func=None, check_inverse=True):
self.regressor = regressor
self.transformer = transformer
self.func = func
self.inverse_func = inverse_func
self.check_inverse = check_inverse
def _fit_transformer(self, y):
if (self.transformer is not None and
(self.func is not None or self.inverse_func is not None)):
raise ValueError("'transformer' and functions 'func'/"
"'inverse_func' cannot both be set.")
elif self.transformer is not None:
self.transformer_ = clone(self.transformer)
else:
if self.func is not None and self.inverse_func is None:
raise ValueError("When 'func' is provided, 'inverse_func' must"
" also be provided")
self.transformer_ = FunctionTransformer(
func=self.func, inverse_func=self.inverse_func, validate=True,
check_inverse=self.check_inverse)
# XXX: sample_weight is not currently passed to the
# transformer. However, if transformer starts using sample_weight, the
# code should be modified accordingly. At the time to consider the
# sample_prop feature, it is also a good use case to be considered.
self.transformer_.fit(y)
if self.check_inverse:
idx_selected = slice(None, None, max(1, y.shape[0] // 10))
y_sel = safe_indexing(y, idx_selected)
y_sel_t = self.transformer_.transform(y_sel)
if not np.allclose(y_sel,
self.transformer_.inverse_transform(y_sel_t)):
warnings.warn("The provided functions or transformer are"
" not strictly inverse of each other. If"
" you are sure you want to proceed regardless"
", set 'check_inverse=False'", UserWarning)
def fit(self, X, y, sample_weight=None):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples,)
Target values.
sample_weight : array-like, shape (n_samples,) optional
Array of weights that are assigned to individual samples.
If not provided, then each sample is given unit weight.
Returns
-------
self : object
"""
y = check_array(y, accept_sparse=False, force_all_finite=True,
ensure_2d=False, dtype='numeric')
# store the number of dimension of the target to predict an array of
# similar shape at predict
self._training_dim = y.ndim
# transformers are designed to modify X which is 2d dimensional, we
# need to modify y accordingly.
if y.ndim == 1:
y_2d = y.reshape(-1, 1)
else:
y_2d = y
self._fit_transformer(y_2d)
if self.regressor is None:
from ..linear_model import LinearRegression
self.regressor_ = LinearRegression()
else:
self.regressor_ = clone(self.regressor)
# transform y and convert back to 1d array if needed
y_trans = self.transformer_.fit_transform(y_2d)
# FIXME: a FunctionTransformer can return a 1D array even when validate
# is set to True. Therefore, we need to check the number of dimension
# first.
if y_trans.ndim == 2 and y_trans.shape[1] == 1:
y_trans = y_trans.squeeze(axis=1)
if sample_weight is None:
self.regressor_.fit(X, y_trans)
else:
self.regressor_.fit(X, y_trans, sample_weight=sample_weight)
return self
def predict(self, X):
"""Predict using the base regressor, applying inverse.
The regressor is used to predict and the ``inverse_func`` or
``inverse_transform`` is applied before returning the prediction.
Parameters
----------
X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
Returns
-------
y_hat : array, shape = (n_samples,)
Predicted values.
"""
check_is_fitted(self, "regressor_")
pred = self.regressor_.predict(X)
if pred.ndim == 1:
pred_trans = self.transformer_.inverse_transform(
pred.reshape(-1, 1))
else:
pred_trans = self.transformer_.inverse_transform(pred)
if (self._training_dim == 1 and
pred_trans.ndim == 2 and pred_trans.shape[1] == 1):
pred_trans = pred_trans.squeeze(axis=1)
return pred_trans
|