File: test_column_transformer.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1023 lines) | stat: -rw-r--r-- 39,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
"""
Test the ColumnTransformer.
"""

import numpy as np
from scipy import sparse
import pytest

from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_dict_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_allclose_dense_sparse
from sklearn.utils.testing import assert_almost_equal

from sklearn.base import BaseEstimator
from sklearn.externals import six
from sklearn.compose import ColumnTransformer, make_column_transformer
from sklearn.exceptions import NotFittedError, DataConversionWarning
from sklearn.preprocessing import StandardScaler, Normalizer, OneHotEncoder
from sklearn.feature_extraction import DictVectorizer


class Trans(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        # 1D Series -> 2D DataFrame
        if hasattr(X, 'to_frame'):
            return X.to_frame()
        # 1D array -> 2D array
        if X.ndim == 1:
            return np.atleast_2d(X).T
        return X


class DoubleTrans(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return 2*X


class SparseMatrixTrans(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        n_samples = len(X)
        return sparse.eye(n_samples, n_samples).tocsr()


class TransNo2D(BaseEstimator):
    def fit(self, X, y=None):
        return self

    def transform(self, X, y=None):
        return X


class TransRaise(BaseEstimator):

    def fit(self, X, y=None):
        raise ValueError("specific message")

    def transform(self, X, y=None):
        raise ValueError("specific message")


def test_column_transformer():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    X_res_first1D = np.array([0, 1, 2])
    X_res_second1D = np.array([2, 4, 6])
    X_res_first = X_res_first1D.reshape(-1, 1)
    X_res_both = X_array

    cases = [
        # single column 1D / 2D
        (0, X_res_first),
        ([0], X_res_first),
        # list-like
        ([0, 1], X_res_both),
        (np.array([0, 1]), X_res_both),
        # slice
        (slice(0, 1), X_res_first),
        (slice(0, 2), X_res_both),
        # boolean mask
        (np.array([True, False]), X_res_first),
    ]

    for selection, res in cases:
        ct = ColumnTransformer([('trans', Trans(), selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_array), res)
        assert_array_equal(ct.fit(X_array).transform(X_array), res)

        # callable that returns any of the allowed specifiers
        ct = ColumnTransformer([('trans', Trans(), lambda x: selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_array), res)
        assert_array_equal(ct.fit(X_array).transform(X_array), res)

    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', Trans(), [1])])
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2

    # test with transformer_weights
    transformer_weights = {'trans1': .1, 'trans2': 10}
    both = ColumnTransformer([('trans1', Trans(), [0]),
                              ('trans2', Trans(), [1])],
                             transformer_weights=transformer_weights)
    res = np.vstack([transformer_weights['trans1'] * X_res_first1D,
                     transformer_weights['trans2'] * X_res_second1D]).T
    assert_array_equal(both.fit_transform(X_array), res)
    assert_array_equal(both.fit(X_array).transform(X_array), res)
    assert len(both.transformers_) == 2

    both = ColumnTransformer([('trans', Trans(), [0, 1])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both)
    assert len(both.transformers_) == 1


def test_column_transformer_dataframe():
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])

    X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
    X_res_both = X_array

    cases = [
        # String keys: label based

        # scalar
        ('first', X_res_first),
        # list
        (['first'], X_res_first),
        (['first', 'second'], X_res_both),
        # slice
        (slice('first', 'second'), X_res_both),

        # int keys: positional

        # scalar
        (0, X_res_first),
        # list
        ([0], X_res_first),
        ([0, 1], X_res_both),
        (np.array([0, 1]), X_res_both),
        # slice
        (slice(0, 1), X_res_first),
        (slice(0, 2), X_res_both),

        # boolean mask
        (np.array([True, False]), X_res_first),
        (pd.Series([True, False], index=['first', 'second']), X_res_first),
    ]

    for selection, res in cases:
        ct = ColumnTransformer([('trans', Trans(), selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_df), res)
        assert_array_equal(ct.fit(X_df).transform(X_df), res)

        # callable that returns any of the allowed specifiers
        ct = ColumnTransformer([('trans', Trans(), lambda X: selection)],
                               remainder='drop')
        assert_array_equal(ct.fit_transform(X_df), res)
        assert_array_equal(ct.fit(X_df).transform(X_df), res)

    ct = ColumnTransformer([('trans1', Trans(), ['first']),
                            ('trans2', Trans(), ['second'])])
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    ct = ColumnTransformer([('trans1', Trans(), [0]),
                            ('trans2', Trans(), [1])])
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # test with transformer_weights
    transformer_weights = {'trans1': .1, 'trans2': 10}
    both = ColumnTransformer([('trans1', Trans(), ['first']),
                              ('trans2', Trans(), ['second'])],
                             transformer_weights=transformer_weights)
    res = np.vstack([transformer_weights['trans1'] * X_df['first'],
                     transformer_weights['trans2'] * X_df['second']]).T
    assert_array_equal(both.fit_transform(X_df), res)
    assert_array_equal(both.fit(X_df).transform(X_df), res)
    assert len(both.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # test multiple columns
    both = ColumnTransformer([('trans', Trans(), ['first', 'second'])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'

    both = ColumnTransformer([('trans', Trans(), [0, 1])],
                             transformer_weights={'trans': .1})
    assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both)
    assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both)
    assert len(both.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'

    # ensure pandas object is passes through

    class TransAssert(BaseEstimator):

        def fit(self, X, y=None):
            return self

        def transform(self, X, y=None):
            assert isinstance(X, (pd.DataFrame, pd.Series))
            if isinstance(X, pd.Series):
                X = X.to_frame()
            return X

    ct = ColumnTransformer([('trans', TransAssert(), 'first')],
                           remainder='drop')
    ct.fit_transform(X_df)
    ct = ColumnTransformer([('trans', TransAssert(), ['first', 'second'])])
    ct.fit_transform(X_df)

    # integer column spec + integer column names -> still use positional
    X_df2 = X_df.copy()
    X_df2.columns = [1, 0]
    ct = ColumnTransformer([('trans', Trans(), 0)], remainder='drop')
    assert_array_equal(ct.fit_transform(X_df), X_res_first)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)

    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'drop'
    assert_array_equal(ct.transformers_[-1][2], [1])


@pytest.mark.parametrize("pandas", [True, False], ids=['pandas', 'numpy'])
@pytest.mark.parametrize("column", [[], np.array([False, False])],
                         ids=['list', 'bool'])
def test_column_transformer_empty_columns(pandas, column):
    # test case that ensures that the column transformer does also work when
    # a given transformer doesn't have any columns to work on
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    if pandas:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X_array, columns=['first', 'second'])
    else:
        X = X_array

    ct = ColumnTransformer([('trans1', Trans(), [0, 1]),
                            ('trans2', Trans(), column)])
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2
    assert isinstance(ct.transformers_[1][1], Trans)

    ct = ColumnTransformer([('trans1', Trans(), column),
                            ('trans2', Trans(), [0, 1])])
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2
    assert isinstance(ct.transformers_[0][1], Trans)

    ct = ColumnTransformer([('trans', Trans(), column)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X), X_res_both)
    assert_array_equal(ct.fit(X).transform(X), X_res_both)
    assert len(ct.transformers_) == 2  # including remainder
    assert isinstance(ct.transformers_[0][1], Trans)

    fixture = np.array([[], [], []])
    ct = ColumnTransformer([('trans', Trans(), column)],
                           remainder='drop')
    assert_array_equal(ct.fit_transform(X), fixture)
    assert_array_equal(ct.fit(X).transform(X), fixture)
    assert len(ct.transformers_) == 2  # including remainder
    assert isinstance(ct.transformers_[0][1], Trans)


def test_column_transformer_sparse_array():
    X_sparse = sparse.eye(3, 2).tocsr()

    # no distinction between 1D and 2D
    X_res_first = X_sparse[:, 0]
    X_res_both = X_sparse

    for col in [0, [0], slice(0, 1)]:
        for remainder, res in [('drop', X_res_first),
                               ('passthrough', X_res_both)]:
            ct = ColumnTransformer([('trans', Trans(), col)],
                                   remainder=remainder,
                                   sparse_threshold=0.8)
            assert sparse.issparse(ct.fit_transform(X_sparse))
            assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res)
            assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
                                         res)

    for col in [[0, 1], slice(0, 2)]:
        ct = ColumnTransformer([('trans', Trans(), col)],
                               sparse_threshold=0.8)
        assert sparse.issparse(ct.fit_transform(X_sparse))
        assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both)
        assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse),
                                     X_res_both)


def test_column_transformer_list():
    X_list = [
        [1, float('nan'), 'a'],
        [0, 0, 'b']
    ]
    expected_result = np.array([
        [1, float('nan'), 1, 0],
        [-1, 0, 0, 1],
    ])

    ct = ColumnTransformer([
        ('numerical', StandardScaler(), [0, 1]),
        ('categorical', OneHotEncoder(), [2]),
    ])

    with pytest.warns(DataConversionWarning):
        # TODO: this warning is not very useful in this case, would be good
        # to get rid of it
        assert_array_equal(ct.fit_transform(X_list), expected_result)
        assert_array_equal(ct.fit(X_list).transform(X_list), expected_result)


def test_column_transformer_sparse_stacking():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)],
                                  sparse_threshold=0.8)
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert sparse.issparse(X_trans)
    assert_equal(X_trans.shape, (X_trans.shape[0], X_trans.shape[0] + 1))
    assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0]))
    assert len(col_trans.transformers_) == 2
    assert col_trans.transformers_[-1][0] != 'remainder'

    col_trans = ColumnTransformer([('trans1', Trans(), [0]),
                                   ('trans2', SparseMatrixTrans(), 1)],
                                  sparse_threshold=0.1)
    col_trans.fit(X_array)
    X_trans = col_trans.transform(X_array)
    assert not sparse.issparse(X_trans)
    assert X_trans.shape == (X_trans.shape[0], X_trans.shape[0] + 1)
    assert_array_equal(X_trans[:, 1:], np.eye(X_trans.shape[0]))


def test_column_transformer_mixed_cols_sparse():
    df = np.array([['a', 1, True],
                   ['b', 2, False]],
                  dtype='O')

    ct = make_column_transformer(
        (OneHotEncoder(), [0]),
        ('passthrough', [1, 2]),
        sparse_threshold=1.0
    )

    # this shouldn't fail, since boolean can be coerced into a numeric
    # See: https://github.com/scikit-learn/scikit-learn/issues/11912
    X_trans = ct.fit_transform(df)
    assert X_trans.getformat() == 'csr'
    assert_array_equal(X_trans.toarray(), np.array([[1, 0, 1, 1],
                                                    [0, 1, 2, 0]]))

    ct = make_column_transformer(
        (OneHotEncoder(), [0]),
        ('passthrough', [0]),
        sparse_threshold=1.0
    )
    with pytest.raises(ValueError,
                       match="For a sparse output, all columns should"):
        # this fails since strings `a` and `b` cannot be
        # coerced into a numeric.
        ct.fit_transform(df)


def test_column_transformer_sparse_threshold():
    X_array = np.array([['a', 'b'], ['A', 'B']], dtype=object).T
    # above data has sparsity of 4 / 8 = 0.5

    # apply threshold even if all sparse
    col_trans = ColumnTransformer([('trans1', OneHotEncoder(), [0]),
                                   ('trans2', OneHotEncoder(), [1])],
                                  sparse_threshold=0.2)
    res = col_trans.fit_transform(X_array)
    assert not sparse.issparse(res)
    assert not col_trans.sparse_output_

    # mixed -> sparsity of (4 + 2) / 8 = 0.75
    for thres in [0.75001, 1]:
        col_trans = ColumnTransformer(
            [('trans1', OneHotEncoder(sparse=True), [0]),
             ('trans2', OneHotEncoder(sparse=False), [1])],
            sparse_threshold=thres)
        res = col_trans.fit_transform(X_array)
        assert sparse.issparse(res)
        assert col_trans.sparse_output_

    for thres in [0.75, 0]:
        col_trans = ColumnTransformer(
            [('trans1', OneHotEncoder(sparse=True), [0]),
             ('trans2', OneHotEncoder(sparse=False), [1])],
            sparse_threshold=thres)
        res = col_trans.fit_transform(X_array)
        assert not sparse.issparse(res)
        assert not col_trans.sparse_output_

    # if nothing is sparse -> no sparse
    for thres in [0.33, 0, 1]:
        col_trans = ColumnTransformer(
            [('trans1', OneHotEncoder(sparse=False), [0]),
             ('trans2', OneHotEncoder(sparse=False), [1])],
            sparse_threshold=thres)
        res = col_trans.fit_transform(X_array)
        assert not sparse.issparse(res)
        assert not col_trans.sparse_output_


def test_column_transformer_error_msg_1D():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T

    col_trans = ColumnTransformer([('trans', StandardScaler(), 0)])
    assert_raise_message(ValueError, "1D data passed to a transformer",
                         col_trans.fit, X_array)
    assert_raise_message(ValueError, "1D data passed to a transformer",
                         col_trans.fit_transform, X_array)

    col_trans = ColumnTransformer([('trans', TransRaise(), 0)])
    for func in [col_trans.fit, col_trans.fit_transform]:
        assert_raise_message(ValueError, "specific message", func, X_array)


def test_2D_transformer_output():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', 'drop', 0),
                            ('trans2', TransNo2D(), 1)])
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.fit_transform, X_array)
    # because fit is also doing transform, this raises already on fit
    assert_raise_message(ValueError, "the 'trans2' transformer should be 2D",
                         ct.fit, X_array)


def test_2D_transformer_output_pandas():
    pd = pytest.importorskip('pandas')

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['col1', 'col2'])

    # if one transformer is dropped, test that name is still correct
    ct = ColumnTransformer([('trans1', TransNo2D(), 'col1')])
    assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
                         ct.fit_transform, X_df)
    # because fit is also doing transform, this raises already on fit
    assert_raise_message(ValueError, "the 'trans1' transformer should be 2D",
                         ct.fit, X_df)


@pytest.mark.parametrize("remainder", ['drop', 'passthrough'])
def test_column_transformer_invalid_columns(remainder):
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    # general invalid
    for col in [1.5, ['string', 1], slice(1, 's'), np.array([1.])]:
        ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
        assert_raise_message(ValueError, "No valid specification",
                             ct.fit, X_array)

    # invalid for arrays
    for col in ['string', ['string', 'other'], slice('a', 'b')]:
        ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder)
        assert_raise_message(ValueError, "Specifying the columns",
                             ct.fit, X_array)


def test_column_transformer_invalid_transformer():

    class NoTrans(BaseEstimator):
        def fit(self, X, y=None):
            return self

        def predict(self, X):
            return X

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    ct = ColumnTransformer([('trans', NoTrans(), [0])])
    assert_raise_message(TypeError, "All estimators should implement fit",
                         ct.fit, X_array)


def test_make_column_transformer():
    scaler = StandardScaler()
    norm = Normalizer()
    ct = make_column_transformer((scaler, 'first'), (norm, ['second']))
    names, transformers, columns = zip(*ct.transformers)
    assert_equal(names, ("standardscaler", "normalizer"))
    assert_equal(transformers, (scaler, norm))
    assert_equal(columns, ('first', ['second']))

    # XXX remove in v0.22
    with pytest.warns(DeprecationWarning,
                      match='`make_column_transformer` now expects'):
        ct1 = make_column_transformer(([0], norm))
    ct2 = make_column_transformer((norm, [0]))
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    assert_almost_equal(ct1.fit_transform(X_array),
                        ct2.fit_transform(X_array))

    with pytest.warns(DeprecationWarning,
                      match='`make_column_transformer` now expects'):
        make_column_transformer(('first', 'drop'))

    with pytest.warns(DeprecationWarning,
                      match='`make_column_transformer` now expects'):
        make_column_transformer(('passthrough', 'passthrough'),
                                ('first', 'drop'))


def test_make_column_transformer_pandas():
    pd = pytest.importorskip('pandas')
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    norm = Normalizer()
    # XXX remove in v0.22
    with pytest.warns(DeprecationWarning,
                      match='`make_column_transformer` now expects'):
        ct1 = make_column_transformer((X_df.columns, norm))
    ct2 = make_column_transformer((norm, X_df.columns))
    assert_almost_equal(ct1.fit_transform(X_df),
                        ct2.fit_transform(X_df))


def test_make_column_transformer_kwargs():
    scaler = StandardScaler()
    norm = Normalizer()
    ct = make_column_transformer((scaler, 'first'), (norm, ['second']),
                                 n_jobs=3, remainder='drop',
                                 sparse_threshold=0.5)
    assert_equal(ct.transformers, make_column_transformer(
        (scaler, 'first'), (norm, ['second'])).transformers)
    assert_equal(ct.n_jobs, 3)
    assert_equal(ct.remainder, 'drop')
    assert_equal(ct.sparse_threshold, 0.5)
    # invalid keyword parameters should raise an error message
    assert_raise_message(
        TypeError,
        'Unknown keyword arguments: "transformer_weights"',
        make_column_transformer, (scaler, 'first'), (norm, ['second']),
        transformer_weights={'pca': 10, 'Transf': 1}
    )


def test_make_column_transformer_remainder_transformer():
    scaler = StandardScaler()
    norm = Normalizer()
    remainder = StandardScaler()
    ct = make_column_transformer((scaler, 'first'), (norm, ['second']),
                                 remainder=remainder)
    assert ct.remainder == remainder


def test_column_transformer_get_set_params():
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(), [1])])

    exp = {'n_jobs': None,
           'remainder': 'drop',
           'sparse_threshold': 0.3,
           'trans1': ct.transformers[0][1],
           'trans1__copy': True,
           'trans1__with_mean': True,
           'trans1__with_std': True,
           'trans2': ct.transformers[1][1],
           'trans2__copy': True,
           'trans2__with_mean': True,
           'trans2__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert_dict_equal(ct.get_params(), exp)

    ct.set_params(trans1__with_mean=False)
    assert_false(ct.get_params()['trans1__with_mean'])

    ct.set_params(trans1='passthrough')
    exp = {'n_jobs': None,
           'remainder': 'drop',
           'sparse_threshold': 0.3,
           'trans1': 'passthrough',
           'trans2': ct.transformers[1][1],
           'trans2__copy': True,
           'trans2__with_mean': True,
           'trans2__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert_dict_equal(ct.get_params(), exp)


def test_column_transformer_named_estimators():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans1', StandardScaler(), [0]),
                            ('trans2', StandardScaler(with_std=False), [1])])
    assert_false(hasattr(ct, 'transformers_'))
    ct.fit(X_array)
    assert hasattr(ct, 'transformers_')
    assert isinstance(ct.named_transformers_['trans1'], StandardScaler)
    assert isinstance(ct.named_transformers_.trans1, StandardScaler)
    assert isinstance(ct.named_transformers_['trans2'], StandardScaler)
    assert isinstance(ct.named_transformers_.trans2, StandardScaler)
    assert_false(ct.named_transformers_.trans2.with_std)
    # check it are fitted transformers
    assert_equal(ct.named_transformers_.trans1.mean_, 1.)


def test_column_transformer_cloning():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T

    ct = ColumnTransformer([('trans', StandardScaler(), [0])])
    ct.fit(X_array)
    assert_false(hasattr(ct.transformers[0][1], 'mean_'))
    assert hasattr(ct.transformers_[0][1], 'mean_')

    ct = ColumnTransformer([('trans', StandardScaler(), [0])])
    ct.fit_transform(X_array)
    assert_false(hasattr(ct.transformers[0][1], 'mean_'))
    assert hasattr(ct.transformers_[0][1], 'mean_')


def test_column_transformer_get_feature_names():
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer([('trans', Trans(), [0, 1])])
    # raise correct error when not fitted
    assert_raises(NotFittedError, ct.get_feature_names)
    # raise correct error when no feature names are available
    ct.fit(X_array)
    assert_raise_message(AttributeError,
                         "Transformer trans (type Trans) does not provide "
                         "get_feature_names", ct.get_feature_names)

    # working example
    X = np.array([[{'a': 1, 'b': 2}, {'a': 3, 'b': 4}],
                  [{'c': 5}, {'c': 6}]], dtype=object).T
    ct = ColumnTransformer(
        [('col' + str(i), DictVectorizer(), i) for i in range(2)])
    ct.fit(X)
    assert_equal(ct.get_feature_names(), ['col0__a', 'col0__b', 'col1__c'])

    # passthrough transformers not supported
    ct = ColumnTransformer([('trans', 'passthrough', [0, 1])])
    ct.fit(X)
    assert_raise_message(
        NotImplementedError, 'get_feature_names is not yet supported',
        ct.get_feature_names)

    ct = ColumnTransformer([('trans', DictVectorizer(), 0)],
                           remainder='passthrough')
    ct.fit(X)
    assert_raise_message(
        NotImplementedError, 'get_feature_names is not yet supported',
        ct.get_feature_names)

    # drop transformer
    ct = ColumnTransformer(
        [('col0', DictVectorizer(), 0), ('col1', 'drop', 1)])
    ct.fit(X)
    assert_equal(ct.get_feature_names(), ['col0__a', 'col0__b'])


def test_column_transformer_special_strings():

    # one 'drop' -> ignore
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer(
        [('trans1', Trans(), [0]), ('trans2', 'drop', [1])])
    exp = np.array([[0.], [1.], [2.]])
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # all 'drop' -> return shape 0 array
    ct = ColumnTransformer(
        [('trans1', 'drop', [0]), ('trans2', 'drop', [1])])
    assert_array_equal(ct.fit(X_array).transform(X_array).shape, (3, 0))
    assert_array_equal(ct.fit_transform(X_array).shape, (3, 0))
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # 'passthrough'
    X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T
    ct = ColumnTransformer(
        [('trans1', Trans(), [0]), ('trans2', 'passthrough', [1])])
    exp = X_array
    assert_array_equal(ct.fit_transform(X_array), exp)
    assert_array_equal(ct.fit(X_array).transform(X_array), exp)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] != 'remainder'

    # None itself / other string is not valid
    for val in [None, 'other']:
        ct = ColumnTransformer(
            [('trans1', Trans(), [0]), ('trans2', None, [1])])
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit_transform, X_array)
        assert_raise_message(TypeError, "All estimators should implement",
                             ct.fit, X_array)


def test_column_transformer_remainder():
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T

    X_res_first = np.array([0, 1, 2]).reshape(-1, 1)
    X_res_second = np.array([2, 4, 6]).reshape(-1, 1)
    X_res_both = X_array

    # default drop
    ct = ColumnTransformer([('trans1', Trans(), [0])])
    assert_array_equal(ct.fit_transform(X_array), X_res_first)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'drop'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # specify passthrough
    ct = ColumnTransformer([('trans', Trans(), [0])], remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # column order is not preserved (passed through added to end)
    ct = ColumnTransformer([('trans1', Trans(), [1])],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both[:, ::-1])
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both[:, ::-1])
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [0])

    # passthrough when all actual transformers are skipped
    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_second)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_second)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])

    # error on invalid arg
    ct = ColumnTransformer([('trans1', Trans(), [0])], remainder=1)
    assert_raise_message(
        ValueError,
        "remainder keyword needs to be one of \'drop\', \'passthrough\', "
        "or estimator.", ct.fit, X_array)
    assert_raise_message(
        ValueError,
        "remainder keyword needs to be one of \'drop\', \'passthrough\', "
        "or estimator.", ct.fit_transform, X_array)

    # check default for make_column_transformer
    ct = make_column_transformer((Trans(), [0]))
    assert ct.remainder == 'drop'


@pytest.mark.parametrize("key", [[0], np.array([0]), slice(0, 1),
                                 np.array([True, False])])
def test_column_transformer_remainder_numpy(key):
    # test different ways that columns are specified with passthrough
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])


@pytest.mark.parametrize(
    "key", [[0], slice(0, 1), np.array([True, False]), ['first'], 'pd-index',
            np.array(['first']), np.array(['first'], dtype=object),
            slice(None, 'first'), slice('first', 'first')])
def test_column_transformer_remainder_pandas(key):
    # test different ways that columns are specified with passthrough
    pd = pytest.importorskip('pandas')
    if isinstance(key, six.string_types) and key == 'pd-index':
        key = pd.Index(['first'])

    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])
    X_res_both = X_array

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder='passthrough')
    assert_array_equal(ct.fit_transform(X_df), X_res_both)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][1] == 'passthrough'
    assert_array_equal(ct.transformers_[-1][2], [1])


@pytest.mark.parametrize("key", [[0], np.array([0]), slice(0, 1),
                                 np.array([True, False, False])])
def test_column_transformer_remainder_transformer(key):
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T
    X_res_both = X_array.copy()

    # second and third columns are doubled when remainder = DoubleTrans
    X_res_both[:, 1:3] *= 2

    ct = ColumnTransformer([('trans1', Trans(), key)],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_no_remaining_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    ct = ColumnTransformer([('trans1', Trans(), [0, 1, 2])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_array)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_array)
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] != 'remainder'


def test_column_transformer_drops_all_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    # columns are doubled when remainder = DoubleTrans
    X_res_both = 2 * X_array.copy()[:, 1:3]

    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder=DoubleTrans())

    assert_array_equal(ct.fit_transform(X_array), X_res_both)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], DoubleTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_sparse_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T

    ct = ColumnTransformer([('trans1', Trans(), [0])],
                           remainder=SparseMatrixTrans(),
                           sparse_threshold=0.8)

    X_trans = ct.fit_transform(X_array)
    assert sparse.issparse(X_trans)
    # SparseMatrixTrans creates 3 features for each column. There is
    # one column in ``transformers``, thus:
    assert X_trans.shape == (3, 3 + 1)

    exp_array = np.hstack(
        (X_array[:, 0].reshape(-1, 1), np.eye(3)))
    assert_array_equal(X_trans.toarray(), exp_array)
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_drop_all_sparse_remainder_transformer():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).T
    ct = ColumnTransformer([('trans1', 'drop', [0])],
                           remainder=SparseMatrixTrans(),
                           sparse_threshold=0.8)

    X_trans = ct.fit_transform(X_array)
    assert sparse.issparse(X_trans)

    #  SparseMatrixTrans creates 3 features for each column, thus:
    assert X_trans.shape == (3, 3)
    assert_array_equal(X_trans.toarray(), np.eye(3))
    assert len(ct.transformers_) == 2
    assert ct.transformers_[-1][0] == 'remainder'
    assert isinstance(ct.transformers_[-1][1], SparseMatrixTrans)
    assert_array_equal(ct.transformers_[-1][2], [1, 2])


def test_column_transformer_get_set_params_with_remainder():
    ct = ColumnTransformer([('trans1', StandardScaler(), [0])],
                           remainder=StandardScaler())

    exp = {'n_jobs': None,
           'remainder': ct.remainder,
           'remainder__copy': True,
           'remainder__with_mean': True,
           'remainder__with_std': True,
           'sparse_threshold': 0.3,
           'trans1': ct.transformers[0][1],
           'trans1__copy': True,
           'trans1__with_mean': True,
           'trans1__with_std': True,
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert ct.get_params() == exp

    ct.set_params(remainder__with_std=False)
    assert not ct.get_params()['remainder__with_std']

    ct.set_params(trans1='passthrough')
    exp = {'n_jobs': None,
           'remainder': ct.remainder,
           'remainder__copy': True,
           'remainder__with_mean': True,
           'remainder__with_std': False,
           'sparse_threshold': 0.3,
           'trans1': 'passthrough',
           'transformers': ct.transformers,
           'transformer_weights': None}

    assert ct.get_params() == exp


def test_column_transformer_no_estimators():
    X_array = np.array([[0, 1, 2],
                        [2, 4, 6],
                        [8, 6, 4]]).astype('float').T
    ct = ColumnTransformer([], remainder=StandardScaler())

    params = ct.get_params()
    assert params['remainder__with_mean']

    X_trans = ct.fit_transform(X_array)
    assert X_trans.shape == X_array.shape
    assert len(ct.transformers_) == 1
    assert ct.transformers_[-1][0] == 'remainder'
    assert ct.transformers_[-1][2] == [0, 1, 2]


def test_column_transformer_no_estimators_set_params():
    ct = ColumnTransformer([]).set_params(n_jobs=2)
    assert ct.n_jobs == 2


def test_column_transformer_callable_specifier():
    # assert that function gets the full array / dataframe
    X_array = np.array([[0, 1, 2], [2, 4, 6]]).T
    X_res_first = np.array([[0, 1, 2]]).T

    def func(X):
        assert_array_equal(X, X_array)
        return [0]

    ct = ColumnTransformer([('trans', Trans(), func)],
                           remainder='drop')
    assert_array_equal(ct.fit_transform(X_array), X_res_first)
    assert_array_equal(ct.fit(X_array).transform(X_array), X_res_first)
    assert callable(ct.transformers[0][2])
    assert ct.transformers_[0][2] == [0]

    pd = pytest.importorskip('pandas')
    X_df = pd.DataFrame(X_array, columns=['first', 'second'])

    def func(X):
        assert_array_equal(X.columns, X_df.columns)
        assert_array_equal(X.values, X_df.values)
        return ['first']

    ct = ColumnTransformer([('trans', Trans(), func)],
                           remainder='drop')
    assert_array_equal(ct.fit_transform(X_df), X_res_first)
    assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first)
    assert callable(ct.transformers[0][2])
    assert ct.transformers_[0][2] == ['first']