File: empirical_covariance_.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (309 lines) | stat: -rw-r--r-- 9,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
Maximum likelihood covariance estimator.

"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD 3 clause

# avoid division truncation
from __future__ import division
import warnings
import numpy as np
from scipy import linalg

from ..base import BaseEstimator
from ..utils import check_array
from ..utils.extmath import fast_logdet
from ..metrics.pairwise import pairwise_distances


def log_likelihood(emp_cov, precision):
    """Computes the sample mean of the log_likelihood under a covariance model

    computes the empirical expected log-likelihood (accounting for the
    normalization terms and scaling), allowing for universal comparison (beyond
    this software package)

    Parameters
    ----------
    emp_cov : 2D ndarray (n_features, n_features)
        Maximum Likelihood Estimator of covariance

    precision : 2D ndarray (n_features, n_features)
        The precision matrix of the covariance model to be tested

    Returns
    -------
    sample mean of the log-likelihood
    """
    p = precision.shape[0]
    log_likelihood_ = - np.sum(emp_cov * precision) + fast_logdet(precision)
    log_likelihood_ -= p * np.log(2 * np.pi)
    log_likelihood_ /= 2.
    return log_likelihood_


def empirical_covariance(X, assume_centered=False):
    """Computes the Maximum likelihood covariance estimator


    Parameters
    ----------
    X : ndarray, shape (n_samples, n_features)
        Data from which to compute the covariance estimate

    assume_centered : boolean
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data are centered before computation.

    Returns
    -------
    covariance : 2D ndarray, shape (n_features, n_features)
        Empirical covariance (Maximum Likelihood Estimator).

    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))

    if X.shape[0] == 1:
        warnings.warn("Only one sample available. "
                      "You may want to reshape your data array")

    if assume_centered:
        covariance = np.dot(X.T, X) / X.shape[0]
    else:
        covariance = np.cov(X.T, bias=1)

    if covariance.ndim == 0:
        covariance = np.array([[covariance]])
    return covariance


class EmpiricalCovariance(BaseEstimator):
    """Maximum likelihood covariance estimator

    Read more in the :ref:`User Guide <covariance>`.

    Parameters
    ----------
    store_precision : bool
        Specifies if the estimated precision is stored.

    assume_centered : bool
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False (default), data are centered before computation.

    Attributes
    ----------
    location_ : array-like, shape (n_features,)
        Estimated location, i.e. the estimated mean.

    covariance_ : 2D ndarray, shape (n_features, n_features)
        Estimated covariance matrix

    precision_ : 2D ndarray, shape (n_features, n_features)
        Estimated pseudo-inverse matrix.
        (stored only if store_precision is True)

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import EmpiricalCovariance
    >>> from sklearn.datasets import make_gaussian_quantiles
    >>> real_cov = np.array([[.8, .3],
    ...                      [.3, .4]])
    >>> np.random.seed(0)
    >>> X = np.random.multivariate_normal(mean=[0, 0],
    ...                                   cov=real_cov,
    ...                                   size=500)
    >>> cov = EmpiricalCovariance().fit(X)
    >>> cov.covariance_ # doctest: +ELLIPSIS
    array([[0.7569..., 0.2818...],
           [0.2818..., 0.3928...]])
    >>> cov.location_
    array([0.0622..., 0.0193...])

    """
    def __init__(self, store_precision=True, assume_centered=False):
        self.store_precision = store_precision
        self.assume_centered = assume_centered

    def _set_covariance(self, covariance):
        """Saves the covariance and precision estimates

        Storage is done accordingly to `self.store_precision`.
        Precision stored only if invertible.

        Parameters
        ----------
        covariance : 2D ndarray, shape (n_features, n_features)
            Estimated covariance matrix to be stored, and from which precision
            is computed.

        """
        covariance = check_array(covariance)
        # set covariance
        self.covariance_ = covariance
        # set precision
        if self.store_precision:
            self.precision_ = linalg.pinvh(covariance)
        else:
            self.precision_ = None

    def get_precision(self):
        """Getter for the precision matrix.

        Returns
        -------
        precision_ : array-like
            The precision matrix associated to the current covariance object.

        """
        if self.store_precision:
            precision = self.precision_
        else:
            precision = linalg.pinvh(self.covariance_)
        return precision

    def fit(self, X, y=None):
        """Fits the Maximum Likelihood Estimator covariance model
        according to the given training data and parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
          Training data, where n_samples is the number of samples and
          n_features is the number of features.

        y
            not used, present for API consistence purpose.

        Returns
        -------
        self : object

        """
        X = check_array(X)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        covariance = empirical_covariance(
            X, assume_centered=self.assume_centered)
        self._set_covariance(covariance)

        return self

    def score(self, X_test, y=None):
        """Computes the log-likelihood of a Gaussian data set with
        `self.covariance_` as an estimator of its covariance matrix.

        Parameters
        ----------
        X_test : array-like, shape = [n_samples, n_features]
            Test data of which we compute the likelihood, where n_samples is
            the number of samples and n_features is the number of features.
            X_test is assumed to be drawn from the same distribution than
            the data used in fit (including centering).

        y
            not used, present for API consistence purpose.

        Returns
        -------
        res : float
            The likelihood of the data set with `self.covariance_` as an
            estimator of its covariance matrix.

        """
        # compute empirical covariance of the test set
        test_cov = empirical_covariance(
            X_test - self.location_, assume_centered=True)
        # compute log likelihood
        res = log_likelihood(test_cov, self.get_precision())

        return res

    def error_norm(self, comp_cov, norm='frobenius', scaling=True,
                   squared=True):
        """Computes the Mean Squared Error between two covariance estimators.
        (In the sense of the Frobenius norm).

        Parameters
        ----------
        comp_cov : array-like, shape = [n_features, n_features]
            The covariance to compare with.

        norm : str
            The type of norm used to compute the error. Available error types:
            - 'frobenius' (default): sqrt(tr(A^t.A))
            - 'spectral': sqrt(max(eigenvalues(A^t.A))
            where A is the error ``(comp_cov - self.covariance_)``.

        scaling : bool
            If True (default), the squared error norm is divided by n_features.
            If False, the squared error norm is not rescaled.

        squared : bool
            Whether to compute the squared error norm or the error norm.
            If True (default), the squared error norm is returned.
            If False, the error norm is returned.

        Returns
        -------
        The Mean Squared Error (in the sense of the Frobenius norm) between
        `self` and `comp_cov` covariance estimators.

        """
        # compute the error
        error = comp_cov - self.covariance_
        # compute the error norm
        if norm == "frobenius":
            squared_norm = np.sum(error ** 2)
        elif norm == "spectral":
            squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
        else:
            raise NotImplementedError(
                "Only spectral and frobenius norms are implemented")
        # optionally scale the error norm
        if scaling:
            squared_norm = squared_norm / error.shape[0]
        # finally get either the squared norm or the norm
        if squared:
            result = squared_norm
        else:
            result = np.sqrt(squared_norm)

        return result

    def mahalanobis(self, X):
        """Computes the squared Mahalanobis distances of given observations.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            The observations, the Mahalanobis distances of the which we
            compute. Observations are assumed to be drawn from the same
            distribution than the data used in fit.

        Returns
        -------
        dist : array, shape = [n_samples,]
            Squared Mahalanobis distances of the observations.

        """
        precision = self.get_precision()
        # compute mahalanobis distances
        dist = pairwise_distances(X, self.location_[np.newaxis, :],
                                  metric='mahalanobis', VI=precision)

        return np.reshape(dist, (len(X),)) ** 2