1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
|
"""GraphicalLasso: sparse inverse covariance estimation with an l1-penalized
estimator.
"""
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause
# Copyright: INRIA
import warnings
import operator
import sys
import time
import numpy as np
from scipy import linalg
from .empirical_covariance_ import (empirical_covariance, EmpiricalCovariance,
log_likelihood)
from ..exceptions import ConvergenceWarning
from ..utils.validation import check_random_state, check_array
from ..utils import deprecated
from ..utils.fixes import _Sequence as Sequence
from ..linear_model import lars_path
from ..linear_model import cd_fast
from ..model_selection import check_cv, cross_val_score
from ..utils._joblib import Parallel, delayed
# Helper functions to compute the objective and dual objective functions
# of the l1-penalized estimator
def _objective(mle, precision_, alpha):
"""Evaluation of the graphical-lasso objective function
the objective function is made of a shifted scaled version of the
normalized log-likelihood (i.e. its empirical mean over the samples) and a
penalisation term to promote sparsity
"""
p = precision_.shape[0]
cost = - 2. * log_likelihood(mle, precision_) + p * np.log(2 * np.pi)
cost += alpha * (np.abs(precision_).sum()
- np.abs(np.diag(precision_)).sum())
return cost
def _dual_gap(emp_cov, precision_, alpha):
"""Expression of the dual gap convergence criterion
The specific definition is given in Duchi "Projected Subgradient Methods
for Learning Sparse Gaussians".
"""
gap = np.sum(emp_cov * precision_)
gap -= precision_.shape[0]
gap += alpha * (np.abs(precision_).sum()
- np.abs(np.diag(precision_)).sum())
return gap
def alpha_max(emp_cov):
"""Find the maximum alpha for which there are some non-zeros off-diagonal.
Parameters
----------
emp_cov : 2D array, (n_features, n_features)
The sample covariance matrix
Notes
-----
This results from the bound for the all the Lasso that are solved
in GraphicalLasso: each time, the row of cov corresponds to Xy. As the
bound for alpha is given by `max(abs(Xy))`, the result follows.
"""
A = np.copy(emp_cov)
A.flat[::A.shape[0] + 1] = 0
return np.max(np.abs(A))
# The g-lasso algorithm
def graphical_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4,
enet_tol=1e-4, max_iter=100, verbose=False,
return_costs=False, eps=np.finfo(np.float64).eps,
return_n_iter=False):
"""l1-penalized covariance estimator
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
emp_cov : 2D ndarray, shape (n_features, n_features)
Empirical covariance from which to compute the covariance estimate.
alpha : positive float
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
cov_init : 2D array (n_features, n_features), optional
The initial guess for the covariance.
mode : {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, optional
The maximum number of iterations.
verbose : boolean, optional
If verbose is True, the objective function and dual gap are
printed at each iteration.
return_costs : boolean, optional
If return_costs is True, the objective function and dual gap
at each iteration are returned.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
return_n_iter : bool, optional
Whether or not to return the number of iterations.
Returns
-------
covariance : 2D ndarray, shape (n_features, n_features)
The estimated covariance matrix.
precision : 2D ndarray, shape (n_features, n_features)
The estimated (sparse) precision matrix.
costs : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True.
n_iter : int
Number of iterations. Returned only if `return_n_iter` is set to True.
See Also
--------
GraphicalLasso, GraphicalLassoCV
Notes
-----
The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm
as in the R `glasso` package.
One possible difference with the `glasso` R package is that the
diagonal coefficients are not penalized.
"""
_, n_features = emp_cov.shape
if alpha == 0:
if return_costs:
precision_ = linalg.inv(emp_cov)
cost = - 2. * log_likelihood(emp_cov, precision_)
cost += n_features * np.log(2 * np.pi)
d_gap = np.sum(emp_cov * precision_) - n_features
if return_n_iter:
return emp_cov, precision_, (cost, d_gap), 0
else:
return emp_cov, precision_, (cost, d_gap)
else:
if return_n_iter:
return emp_cov, linalg.inv(emp_cov), 0
else:
return emp_cov, linalg.inv(emp_cov)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init.copy()
# As a trivial regularization (Tikhonov like), we scale down the
# off-diagonal coefficients of our starting point: This is needed, as
# in the cross-validation the cov_init can easily be
# ill-conditioned, and the CV loop blows. Beside, this takes
# conservative stand-point on the initial conditions, and it tends to
# make the convergence go faster.
covariance_ *= 0.95
diagonal = emp_cov.flat[::n_features + 1]
covariance_.flat[::n_features + 1] = diagonal
precision_ = linalg.pinvh(covariance_)
indices = np.arange(n_features)
costs = list()
# The different l1 regression solver have different numerical errors
if mode == 'cd':
errors = dict(over='raise', invalid='ignore')
else:
errors = dict(invalid='raise')
try:
# be robust to the max_iter=0 edge case, see:
# https://github.com/scikit-learn/scikit-learn/issues/4134
d_gap = np.inf
# set a sub_covariance buffer
sub_covariance = np.ascontiguousarray(covariance_[1:, 1:])
for i in range(max_iter):
for idx in range(n_features):
# To keep the contiguous matrix `sub_covariance` equal to
# covariance_[indices != idx].T[indices != idx]
# we only need to update 1 column and 1 line when idx changes
if idx > 0:
di = idx - 1
sub_covariance[di] = covariance_[di][indices != idx]
sub_covariance[:, di] = covariance_[:, di][indices != idx]
else:
sub_covariance[:] = covariance_[1:, 1:]
row = emp_cov[idx, indices != idx]
with np.errstate(**errors):
if mode == 'cd':
# Use coordinate descent
coefs = -(precision_[indices != idx, idx]
/ (precision_[idx, idx] + 1000 * eps))
coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram(
coefs, alpha, 0, sub_covariance,
row, row, max_iter, enet_tol,
check_random_state(None), False)
else:
# Use LARS
_, _, coefs = lars_path(
sub_covariance, row, Xy=row, Gram=sub_covariance,
alpha_min=alpha / (n_features - 1), copy_Gram=True,
eps=eps, method='lars', return_path=False)
# Update the precision matrix
precision_[idx, idx] = (
1. / (covariance_[idx, idx]
- np.dot(covariance_[indices != idx, idx], coefs)))
precision_[indices != idx, idx] = (- precision_[idx, idx]
* coefs)
precision_[idx, indices != idx] = (- precision_[idx, idx]
* coefs)
coefs = np.dot(sub_covariance, coefs)
covariance_[idx, indices != idx] = coefs
covariance_[indices != idx, idx] = coefs
if not np.isfinite(precision_.sum()):
raise FloatingPointError('The system is too ill-conditioned '
'for this solver')
d_gap = _dual_gap(emp_cov, precision_, alpha)
cost = _objective(emp_cov, precision_, alpha)
if verbose:
print('[graphical_lasso] Iteration '
'% 3i, cost % 3.2e, dual gap %.3e'
% (i, cost, d_gap))
if return_costs:
costs.append((cost, d_gap))
if np.abs(d_gap) < tol:
break
if not np.isfinite(cost) and i > 0:
raise FloatingPointError('Non SPD result: the system is '
'too ill-conditioned for this solver')
else:
warnings.warn('graphical_lasso: did not converge after '
'%i iteration: dual gap: %.3e'
% (max_iter, d_gap), ConvergenceWarning)
except FloatingPointError as e:
e.args = (e.args[0]
+ '. The system is too ill-conditioned for this solver',)
raise e
if return_costs:
if return_n_iter:
return covariance_, precision_, costs, i + 1
else:
return covariance_, precision_, costs
else:
if return_n_iter:
return covariance_, precision_, i + 1
else:
return covariance_, precision_
class GraphicalLasso(EmpiricalCovariance):
"""Sparse inverse covariance estimation with an l1-penalized estimator.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
alpha : positive float, default 0.01
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
mode : {'cd', 'lars'}, default 'cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : positive float, default 1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, default 100
The maximum number of iterations.
verbose : boolean, default False
If verbose is True, the objective function and dual gap are
plotted at each iteration.
assume_centered : boolean, default False
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
covariance_ : array-like, shape (n_features, n_features)
Estimated covariance matrix
precision_ : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
n_iter_ : int
Number of iterations run.
See Also
--------
graphical_lasso, GraphicalLassoCV
"""
def __init__(self, alpha=.01, mode='cd', tol=1e-4, enet_tol=1e-4,
max_iter=100, verbose=False, assume_centered=False):
super(GraphicalLasso, self).__init__(assume_centered=assume_centered)
self.alpha = alpha
self.mode = mode
self.tol = tol
self.enet_tol = enet_tol
self.max_iter = max_iter
self.verbose = verbose
def fit(self, X, y=None):
"""Fits the GraphicalLasso model to X.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate
y : (ignored)
"""
# Covariance does not make sense for a single feature
X = check_array(X, ensure_min_features=2, ensure_min_samples=2,
estimator=self)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
emp_cov = empirical_covariance(
X, assume_centered=self.assume_centered)
self.covariance_, self.precision_, self.n_iter_ = graphical_lasso(
emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol,
enet_tol=self.enet_tol, max_iter=self.max_iter,
verbose=self.verbose, return_n_iter=True)
return self
# Cross-validation with GraphicalLasso
def graphical_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd',
tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False):
"""l1-penalized covariance estimator along a path of decreasing alphas
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
X : 2D ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate.
alphas : list of positive floats
The list of regularization parameters, decreasing order.
cov_init : 2D array (n_features, n_features), optional
The initial guess for the covariance.
X_test : 2D array, shape (n_test_samples, n_features), optional
Optional test matrix to measure generalisation error.
mode : {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, optional
The maximum number of iterations.
verbose : integer, optional
The higher the verbosity flag, the more information is printed
during the fitting.
Returns
-------
covariances_ : List of 2D ndarray, shape (n_features, n_features)
The estimated covariance matrices.
precisions_ : List of 2D ndarray, shape (n_features, n_features)
The estimated (sparse) precision matrices.
scores_ : List of float
The generalisation error (log-likelihood) on the test data.
Returned only if test data is passed.
"""
inner_verbose = max(0, verbose - 1)
emp_cov = empirical_covariance(X)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init
covariances_ = list()
precisions_ = list()
scores_ = list()
if X_test is not None:
test_emp_cov = empirical_covariance(X_test)
for alpha in alphas:
try:
# Capture the errors, and move on
covariance_, precision_ = graphical_lasso(
emp_cov, alpha=alpha, cov_init=covariance_, mode=mode, tol=tol,
enet_tol=enet_tol, max_iter=max_iter, verbose=inner_verbose)
covariances_.append(covariance_)
precisions_.append(precision_)
if X_test is not None:
this_score = log_likelihood(test_emp_cov, precision_)
except FloatingPointError:
this_score = -np.inf
covariances_.append(np.nan)
precisions_.append(np.nan)
if X_test is not None:
if not np.isfinite(this_score):
this_score = -np.inf
scores_.append(this_score)
if verbose == 1:
sys.stderr.write('.')
elif verbose > 1:
if X_test is not None:
print('[graphical_lasso_path] alpha: %.2e, score: %.2e'
% (alpha, this_score))
else:
print('[graphical_lasso_path] alpha: %.2e' % alpha)
if X_test is not None:
return covariances_, precisions_, scores_
return covariances_, precisions_
class GraphicalLassoCV(GraphicalLasso):
"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
alphas : integer, or list positive float, optional
If an integer is given, it fixes the number of points on the
grids of alpha to be used. If a list is given, it gives the
grid to be used. See the notes in the class docstring for
more details.
n_refinements : strictly positive integer
The number of times the grid is refined. Not used if explicit
values of alphas are passed.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
tol : positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, optional
Maximum number of iterations.
mode : {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where number of features is greater
than number of samples. Elsewhere prefer cd which is more numerically
stable.
n_jobs : int or None, optional (default=None)
number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : boolean, optional
If verbose is True, the objective function and duality gap are
printed at each iteration.
assume_centered : boolean
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
covariance_ : numpy.ndarray, shape (n_features, n_features)
Estimated covariance matrix.
precision_ : numpy.ndarray, shape (n_features, n_features)
Estimated precision matrix (inverse covariance).
alpha_ : float
Penalization parameter selected.
cv_alphas_ : list of float
All penalization parameters explored.
grid_scores_ : 2D numpy.ndarray (n_alphas, n_folds)
Log-likelihood score on left-out data across folds.
n_iter_ : int
Number of iterations run for the optimal alpha.
See Also
--------
graphical_lasso, GraphicalLasso
Notes
-----
The search for the optimal penalization parameter (alpha) is done on an
iteratively refined grid: first the cross-validated scores on a grid are
computed, then a new refined grid is centered around the maximum, and so
on.
One of the challenges which is faced here is that the solvers can
fail to converge to a well-conditioned estimate. The corresponding
values of alpha then come out as missing values, but the optimum may
be close to these missing values.
"""
def __init__(self, alphas=4, n_refinements=4, cv='warn', tol=1e-4,
enet_tol=1e-4, max_iter=100, mode='cd', n_jobs=None,
verbose=False, assume_centered=False):
super(GraphicalLassoCV, self).__init__(
mode=mode, tol=tol, verbose=verbose, enet_tol=enet_tol,
max_iter=max_iter, assume_centered=assume_centered)
self.alphas = alphas
self.n_refinements = n_refinements
self.cv = cv
self.n_jobs = n_jobs
@property
@deprecated("Attribute grid_scores was deprecated in version 0.19 and "
"will be removed in 0.21. Use ``grid_scores_`` instead")
def grid_scores(self):
return self.grid_scores_
def fit(self, X, y=None):
"""Fits the GraphicalLasso covariance model to X.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate
y : (ignored)
"""
# Covariance does not make sense for a single feature
X = check_array(X, ensure_min_features=2, estimator=self)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
emp_cov = empirical_covariance(
X, assume_centered=self.assume_centered)
cv = check_cv(self.cv, y, classifier=False)
# List of (alpha, scores, covs)
path = list()
n_alphas = self.alphas
inner_verbose = max(0, self.verbose - 1)
if isinstance(n_alphas, Sequence):
alphas = self.alphas
n_refinements = 1
else:
n_refinements = self.n_refinements
alpha_1 = alpha_max(emp_cov)
alpha_0 = 1e-2 * alpha_1
alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1),
n_alphas)[::-1]
t0 = time.time()
for i in range(n_refinements):
with warnings.catch_warnings():
# No need to see the convergence warnings on this grid:
# they will always be points that will not converge
# during the cross-validation
warnings.simplefilter('ignore', ConvergenceWarning)
# Compute the cross-validated loss on the current grid
# NOTE: Warm-restarting graphical_lasso_path has been tried,
# and this did not allow to gain anything
# (same execution time with or without).
this_path = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose
)(delayed(graphical_lasso_path)(X[train], alphas=alphas,
X_test=X[test], mode=self.mode,
tol=self.tol,
enet_tol=self.enet_tol,
max_iter=int(.1 *
self.max_iter),
verbose=inner_verbose)
for train, test in cv.split(X, y))
# Little danse to transform the list in what we need
covs, _, scores = zip(*this_path)
covs = zip(*covs)
scores = zip(*scores)
path.extend(zip(alphas, scores, covs))
path = sorted(path, key=operator.itemgetter(0), reverse=True)
# Find the maximum (avoid using built in 'max' function to
# have a fully-reproducible selection of the smallest alpha
# in case of equality)
best_score = -np.inf
last_finite_idx = 0
for index, (alpha, scores, _) in enumerate(path):
this_score = np.mean(scores)
if this_score >= .1 / np.finfo(np.float64).eps:
this_score = np.nan
if np.isfinite(this_score):
last_finite_idx = index
if this_score >= best_score:
best_score = this_score
best_index = index
# Refine the grid
if best_index == 0:
# We do not need to go back: we have chosen
# the highest value of alpha for which there are
# non-zero coefficients
alpha_1 = path[0][0]
alpha_0 = path[1][0]
elif (best_index == last_finite_idx
and not best_index == len(path) - 1):
# We have non-converged models on the upper bound of the
# grid, we need to refine the grid there
alpha_1 = path[best_index][0]
alpha_0 = path[best_index + 1][0]
elif best_index == len(path) - 1:
alpha_1 = path[best_index][0]
alpha_0 = 0.01 * path[best_index][0]
else:
alpha_1 = path[best_index - 1][0]
alpha_0 = path[best_index + 1][0]
if not isinstance(n_alphas, Sequence):
alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0),
n_alphas + 2)
alphas = alphas[1:-1]
if self.verbose and n_refinements > 1:
print('[GraphicalLassoCV] Done refinement % 2i out of'
' %i: % 3is' % (i + 1, n_refinements, time.time() - t0))
path = list(zip(*path))
grid_scores = list(path[1])
alphas = list(path[0])
# Finally, compute the score with alpha = 0
alphas.append(0)
grid_scores.append(cross_val_score(EmpiricalCovariance(), X,
cv=cv, n_jobs=self.n_jobs,
verbose=inner_verbose))
self.grid_scores_ = np.array(grid_scores)
best_alpha = alphas[best_index]
self.alpha_ = best_alpha
self.cv_alphas_ = alphas
# Finally fit the model with the selected alpha
self.covariance_, self.precision_, self.n_iter_ = graphical_lasso(
emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol,
enet_tol=self.enet_tol, max_iter=self.max_iter,
verbose=inner_verbose, return_n_iter=True)
return self
# The g-lasso algorithm
@deprecated("The 'graph_lasso' was renamed to 'graphical_lasso' "
"in version 0.20 and will be removed in 0.22.")
def graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4,
enet_tol=1e-4, max_iter=100, verbose=False,
return_costs=False, eps=np.finfo(np.float64).eps,
return_n_iter=False):
"""l1-penalized covariance estimator
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
emp_cov : 2D ndarray, shape (n_features, n_features)
Empirical covariance from which to compute the covariance estimate.
alpha : positive float
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
cov_init : 2D array (n_features, n_features), optional
The initial guess for the covariance.
mode : {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, optional
The maximum number of iterations.
verbose : boolean, optional
If verbose is True, the objective function and dual gap are
printed at each iteration.
return_costs : boolean, optional
If return_costs is True, the objective function and dual gap
at each iteration are returned.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems.
return_n_iter : bool, optional
Whether or not to return the number of iterations.
Returns
-------
covariance : 2D ndarray, shape (n_features, n_features)
The estimated covariance matrix.
precision : 2D ndarray, shape (n_features, n_features)
The estimated (sparse) precision matrix.
costs : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True.
n_iter : int
Number of iterations. Returned only if `return_n_iter` is set to True.
See Also
--------
GraphLasso, GraphLassoCV
Notes
-----
The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm
as in the R `glasso` package.
One possible difference with the `glasso` R package is that the
diagonal coefficients are not penalized.
"""
return graphical_lasso(emp_cov, alpha, cov_init, mode, tol,
enet_tol, max_iter, verbose, return_costs,
eps, return_n_iter)
@deprecated("The 'GraphLasso' was renamed to 'GraphicalLasso' "
"in version 0.20 and will be removed in 0.22.")
class GraphLasso(GraphicalLasso):
"""Sparse inverse covariance estimation with an l1-penalized estimator.
This class implements the Graphical Lasso algorithm.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
alpha : positive float, default 0.01
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
mode : {'cd', 'lars'}, default 'cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : positive float, default 1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, default 100
The maximum number of iterations.
verbose : boolean, default False
If verbose is True, the objective function and dual gap are
plotted at each iteration.
assume_centered : boolean, default False
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
covariance_ : array-like, shape (n_features, n_features)
Estimated covariance matrix
precision_ : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
n_iter_ : int
Number of iterations run.
See Also
--------
graph_lasso, GraphLassoCV
"""
@deprecated("The 'GraphLassoCV' was renamed to 'GraphicalLassoCV' "
"in version 0.20 and will be removed in 0.22.")
class GraphLassoCV(GraphicalLassoCV):
"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
See glossary entry for :term:`cross-validation estimator`.
This class implements the Graphical Lasso algorithm.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
alphas : integer, or list positive float, optional
If an integer is given, it fixes the number of points on the
grids of alpha to be used. If a list is given, it gives the
grid to be used. See the notes in the class docstring for
more details.
n_refinements : strictly positive integer
The number of times the grid is refined. Not used if explicit
values of alphas are passed.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None will change from 3-fold to 5-fold
in v0.22.
tol : positive float, optional
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped.
enet_tol : positive float, optional
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'.
max_iter : integer, optional
Maximum number of iterations.
mode : {'cd', 'lars'}
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where number of features is greater
than number of samples. Elsewhere prefer cd which is more numerically
stable.
n_jobs : int or None, optional (default=None)
number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
verbose : boolean, optional
If verbose is True, the objective function and duality gap are
printed at each iteration.
assume_centered : Boolean
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
covariance_ : numpy.ndarray, shape (n_features, n_features)
Estimated covariance matrix.
precision_ : numpy.ndarray, shape (n_features, n_features)
Estimated precision matrix (inverse covariance).
alpha_ : float
Penalization parameter selected.
cv_alphas_ : list of float
All penalization parameters explored.
grid_scores_ : 2D numpy.ndarray (n_alphas, n_folds)
Log-likelihood score on left-out data across folds.
n_iter_ : int
Number of iterations run for the optimal alpha.
See Also
--------
graph_lasso, GraphLasso
Notes
-----
The search for the optimal penalization parameter (alpha) is done on an
iteratively refined grid: first the cross-validated scores on a grid are
computed, then a new refined grid is centered around the maximum, and so
on.
One of the challenges which is faced here is that the solvers can
fail to converge to a well-conditioned estimate. The corresponding
values of alpha then come out as missing values, but the optimum may
be close to these missing values.
"""
|