1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
import numpy as np
from numpy.testing import assert_approx_equal
from sklearn.utils.testing import (assert_equal, assert_array_almost_equal,
assert_array_equal, assert_raise_message,
assert_warns)
from sklearn.datasets import load_linnerud
from sklearn.cross_decomposition import pls_, CCA
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
from sklearn.exceptions import ConvergenceWarning
def test_pls():
d = load_linnerud()
X = d.data
Y = d.target
# 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A)
# ===========================================================
# Compare 2 algo.: nipals vs. svd
# ------------------------------
pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1])
pls_bynipals.fit(X, Y)
pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1])
pls_bysvd.fit(X, Y)
# check equalities of loading (up to the sign of the second column)
assert_array_almost_equal(
pls_bynipals.x_loadings_,
pls_bysvd.x_loadings_, decimal=5,
err_msg="nipals and svd implementations lead to different x loadings")
assert_array_almost_equal(
pls_bynipals.y_loadings_,
pls_bysvd.y_loadings_, decimal=5,
err_msg="nipals and svd implementations lead to different y loadings")
# Check PLS properties (with n_components=X.shape[1])
# ---------------------------------------------------
plsca = pls_.PLSCanonical(n_components=X.shape[1])
plsca.fit(X, Y)
T = plsca.x_scores_
P = plsca.x_loadings_
Wx = plsca.x_weights_
U = plsca.y_scores_
Q = plsca.y_loadings_
Wy = plsca.y_weights_
def check_ortho(M, err_msg):
K = np.dot(M.T, M)
assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg)
# Orthogonality of weights
# ~~~~~~~~~~~~~~~~~~~~~~~~
check_ortho(Wx, "x weights are not orthogonal")
check_ortho(Wy, "y weights are not orthogonal")
# Orthogonality of latent scores
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
check_ortho(T, "x scores are not orthogonal")
check_ortho(U, "y scores are not orthogonal")
# Check X = TP' and Y = UQ' (with (p == q) components)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# center scale X, Y
Xc, Yc, x_mean, y_mean, x_std, y_std =\
pls_._center_scale_xy(X.copy(), Y.copy(), scale=True)
assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'")
assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'")
# Check that rotations on training data lead to scores
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Xr = plsca.transform(X)
assert_array_almost_equal(Xr, plsca.x_scores_,
err_msg="rotation on X failed")
Xr, Yr = plsca.transform(X, Y)
assert_array_almost_equal(Xr, plsca.x_scores_,
err_msg="rotation on X failed")
assert_array_almost_equal(Yr, plsca.y_scores_,
err_msg="rotation on Y failed")
# "Non regression test" on canonical PLS
# --------------------------------------
# The results were checked against the R-package plspm
pls_ca = pls_.PLSCanonical(n_components=X.shape[1])
pls_ca.fit(X, Y)
x_weights = np.array(
[[-0.61330704, 0.25616119, -0.74715187],
[-0.74697144, 0.11930791, 0.65406368],
[-0.25668686, -0.95924297, -0.11817271]])
# x_weights_sign_flip holds columns of 1 or -1, depending on sign flip
# between R and python
x_weights_sign_flip = pls_ca.x_weights_ / x_weights
x_rotations = np.array(
[[-0.61330704, 0.41591889, -0.62297525],
[-0.74697144, 0.31388326, 0.77368233],
[-0.25668686, -0.89237972, -0.24121788]])
x_rotations_sign_flip = pls_ca.x_rotations_ / x_rotations
y_weights = np.array(
[[+0.58989127, 0.7890047, 0.1717553],
[+0.77134053, -0.61351791, 0.16920272],
[-0.23887670, -0.03267062, 0.97050016]])
y_weights_sign_flip = pls_ca.y_weights_ / y_weights
y_rotations = np.array(
[[+0.58989127, 0.7168115, 0.30665872],
[+0.77134053, -0.70791757, 0.19786539],
[-0.23887670, -0.00343595, 0.94162826]])
y_rotations_sign_flip = pls_ca.y_rotations_ / y_rotations
# x_weights = X.dot(x_rotation)
# Hence R/python sign flip should be the same in x_weight and x_rotation
assert_array_almost_equal(x_rotations_sign_flip, x_weights_sign_flip)
# This test that R / python give the same result up to column
# sign indeterminacy
assert_array_almost_equal(np.abs(x_rotations_sign_flip), 1, 4)
assert_array_almost_equal(np.abs(x_weights_sign_flip), 1, 4)
assert_array_almost_equal(y_rotations_sign_flip, y_weights_sign_flip)
assert_array_almost_equal(np.abs(y_rotations_sign_flip), 1, 4)
assert_array_almost_equal(np.abs(y_weights_sign_flip), 1, 4)
# 2) Regression PLS (PLS2): "Non regression test"
# ===============================================
# The results were checked against the R-packages plspm, misOmics and pls
pls_2 = pls_.PLSRegression(n_components=X.shape[1])
pls_2.fit(X, Y)
x_weights = np.array(
[[-0.61330704, -0.00443647, 0.78983213],
[-0.74697144, -0.32172099, -0.58183269],
[-0.25668686, 0.94682413, -0.19399983]])
x_weights_sign_flip = pls_2.x_weights_ / x_weights
x_loadings = np.array(
[[-0.61470416, -0.24574278, 0.78983213],
[-0.65625755, -0.14396183, -0.58183269],
[-0.51733059, 1.00609417, -0.19399983]])
x_loadings_sign_flip = pls_2.x_loadings_ / x_loadings
y_weights = np.array(
[[+0.32456184, 0.29892183, 0.20316322],
[+0.42439636, 0.61970543, 0.19320542],
[-0.13143144, -0.26348971, -0.17092916]])
y_weights_sign_flip = pls_2.y_weights_ / y_weights
y_loadings = np.array(
[[+0.32456184, 0.29892183, 0.20316322],
[+0.42439636, 0.61970543, 0.19320542],
[-0.13143144, -0.26348971, -0.17092916]])
y_loadings_sign_flip = pls_2.y_loadings_ / y_loadings
# x_loadings[:, i] = Xi.dot(x_weights[:, i]) \forall i
assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip, 4)
assert_array_almost_equal(np.abs(x_loadings_sign_flip), 1, 4)
assert_array_almost_equal(np.abs(x_weights_sign_flip), 1, 4)
assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip, 4)
assert_array_almost_equal(np.abs(y_loadings_sign_flip), 1, 4)
assert_array_almost_equal(np.abs(y_weights_sign_flip), 1, 4)
# 3) Another non-regression test of Canonical PLS on random dataset
# =================================================================
# The results were checked against the R-package plspm
n = 500
p_noise = 10
q_noise = 5
# 2 latents vars:
rng = check_random_state(11)
l1 = rng.normal(size=n)
l2 = rng.normal(size=n)
latents = np.array([l1, l1, l2, l2]).T
X = latents + rng.normal(size=4 * n).reshape((n, 4))
Y = latents + rng.normal(size=4 * n).reshape((n, 4))
X = np.concatenate(
(X, rng.normal(size=p_noise * n).reshape(n, p_noise)), axis=1)
Y = np.concatenate(
(Y, rng.normal(size=q_noise * n).reshape(n, q_noise)), axis=1)
pls_ca = pls_.PLSCanonical(n_components=3)
pls_ca.fit(X, Y)
x_weights = np.array(
[[0.65803719, 0.19197924, 0.21769083],
[0.7009113, 0.13303969, -0.15376699],
[0.13528197, -0.68636408, 0.13856546],
[0.16854574, -0.66788088, -0.12485304],
[-0.03232333, -0.04189855, 0.40690153],
[0.1148816, -0.09643158, 0.1613305],
[0.04792138, -0.02384992, 0.17175319],
[-0.06781, -0.01666137, -0.18556747],
[-0.00266945, -0.00160224, 0.11893098],
[-0.00849528, -0.07706095, 0.1570547],
[-0.00949471, -0.02964127, 0.34657036],
[-0.03572177, 0.0945091, 0.3414855],
[0.05584937, -0.02028961, -0.57682568],
[0.05744254, -0.01482333, -0.17431274]])
x_weights_sign_flip = pls_ca.x_weights_ / x_weights
x_loadings = np.array(
[[0.65649254, 0.1847647, 0.15270699],
[0.67554234, 0.15237508, -0.09182247],
[0.19219925, -0.67750975, 0.08673128],
[0.2133631, -0.67034809, -0.08835483],
[-0.03178912, -0.06668336, 0.43395268],
[0.15684588, -0.13350241, 0.20578984],
[0.03337736, -0.03807306, 0.09871553],
[-0.06199844, 0.01559854, -0.1881785],
[0.00406146, -0.00587025, 0.16413253],
[-0.00374239, -0.05848466, 0.19140336],
[0.00139214, -0.01033161, 0.32239136],
[-0.05292828, 0.0953533, 0.31916881],
[0.04031924, -0.01961045, -0.65174036],
[0.06172484, -0.06597366, -0.1244497]])
x_loadings_sign_flip = pls_ca.x_loadings_ / x_loadings
y_weights = np.array(
[[0.66101097, 0.18672553, 0.22826092],
[0.69347861, 0.18463471, -0.23995597],
[0.14462724, -0.66504085, 0.17082434],
[0.22247955, -0.6932605, -0.09832993],
[0.07035859, 0.00714283, 0.67810124],
[0.07765351, -0.0105204, -0.44108074],
[-0.00917056, 0.04322147, 0.10062478],
[-0.01909512, 0.06182718, 0.28830475],
[0.01756709, 0.04797666, 0.32225745]])
y_weights_sign_flip = pls_ca.y_weights_ / y_weights
y_loadings = np.array(
[[0.68568625, 0.1674376, 0.0969508],
[0.68782064, 0.20375837, -0.1164448],
[0.11712173, -0.68046903, 0.12001505],
[0.17860457, -0.6798319, -0.05089681],
[0.06265739, -0.0277703, 0.74729584],
[0.0914178, 0.00403751, -0.5135078],
[-0.02196918, -0.01377169, 0.09564505],
[-0.03288952, 0.09039729, 0.31858973],
[0.04287624, 0.05254676, 0.27836841]])
y_loadings_sign_flip = pls_ca.y_loadings_ / y_loadings
assert_array_almost_equal(x_loadings_sign_flip, x_weights_sign_flip, 4)
assert_array_almost_equal(np.abs(x_weights_sign_flip), 1, 4)
assert_array_almost_equal(np.abs(x_loadings_sign_flip), 1, 4)
assert_array_almost_equal(y_loadings_sign_flip, y_weights_sign_flip, 4)
assert_array_almost_equal(np.abs(y_weights_sign_flip), 1, 4)
assert_array_almost_equal(np.abs(y_loadings_sign_flip), 1, 4)
# Orthogonality of weights
# ~~~~~~~~~~~~~~~~~~~~~~~~
check_ortho(pls_ca.x_weights_, "x weights are not orthogonal")
check_ortho(pls_ca.y_weights_, "y weights are not orthogonal")
# Orthogonality of latent scores
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
check_ortho(pls_ca.x_scores_, "x scores are not orthogonal")
check_ortho(pls_ca.y_scores_, "y scores are not orthogonal")
def test_convergence_fail():
d = load_linnerud()
X = d.data
Y = d.target
pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1],
max_iter=2, tol=1e-10)
assert_warns(ConvergenceWarning, pls_bynipals.fit, X, Y)
def test_PLSSVD():
# Let's check the PLSSVD doesn't return all possible component but just
# the specified number
d = load_linnerud()
X = d.data
Y = d.target
n_components = 2
for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]:
pls = clf(n_components=n_components)
pls.fit(X, Y)
assert_equal(n_components, pls.y_scores_.shape[1])
def test_univariate_pls_regression():
# Ensure 1d Y is correctly interpreted
d = load_linnerud()
X = d.data
Y = d.target
clf = pls_.PLSRegression()
# Compare 1d to column vector
model1 = clf.fit(X, Y[:, 0]).coef_
model2 = clf.fit(X, Y[:, :1]).coef_
assert_array_almost_equal(model1, model2)
def test_predict_transform_copy():
# check that the "copy" keyword works
d = load_linnerud()
X = d.data
Y = d.target
clf = pls_.PLSCanonical()
X_copy = X.copy()
Y_copy = Y.copy()
clf.fit(X, Y)
# check that results are identical with copy
assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False))
assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False))
# check also if passing Y
assert_array_almost_equal(clf.transform(X, Y),
clf.transform(X.copy(), Y.copy(), copy=False))
# check that copy doesn't destroy
# we do want to check exact equality here
assert_array_equal(X_copy, X)
assert_array_equal(Y_copy, Y)
# also check that mean wasn't zero before (to make sure we didn't touch it)
assert np.all(X.mean(axis=0) != 0)
def test_scale_and_stability():
# We test scale=True parameter
# This allows to check numerical stability over platforms as well
d = load_linnerud()
X1 = d.data
Y1 = d.target
# causes X[:, -1].std() to be zero
X1[:, -1] = 1.0
# From bug #2821
# Test with X2, T2 s.t. clf.x_score[:, 1] == 0, clf.y_score[:, 1] == 0
# This test robustness of algorithm when dealing with value close to 0
X2 = np.array([[0., 0., 1.],
[1., 0., 0.],
[2., 2., 2.],
[3., 5., 4.]])
Y2 = np.array([[0.1, -0.2],
[0.9, 1.1],
[6.2, 5.9],
[11.9, 12.3]])
for (X, Y) in [(X1, Y1), (X2, Y2)]:
X_std = X.std(axis=0, ddof=1)
X_std[X_std == 0] = 1
Y_std = Y.std(axis=0, ddof=1)
Y_std[Y_std == 0] = 1
X_s = (X - X.mean(axis=0)) / X_std
Y_s = (Y - Y.mean(axis=0)) / Y_std
for clf in [CCA(), pls_.PLSCanonical(), pls_.PLSRegression(),
pls_.PLSSVD()]:
clf.set_params(scale=True)
X_score, Y_score = clf.fit_transform(X, Y)
clf.set_params(scale=False)
X_s_score, Y_s_score = clf.fit_transform(X_s, Y_s)
assert_array_almost_equal(X_s_score, X_score)
assert_array_almost_equal(Y_s_score, Y_score)
# Scaling should be idempotent
clf.set_params(scale=True)
X_score, Y_score = clf.fit_transform(X_s, Y_s)
assert_array_almost_equal(X_s_score, X_score)
assert_array_almost_equal(Y_s_score, Y_score)
def test_pls_errors():
d = load_linnerud()
X = d.data
Y = d.target
for clf in [pls_.PLSCanonical(), pls_.PLSRegression(),
pls_.PLSSVD()]:
clf.n_components = 4
assert_raise_message(ValueError, "Invalid number of components",
clf.fit, X, Y)
def test_pls_scaling():
# sanity check for scale=True
n_samples = 1000
n_targets = 5
n_features = 10
rng = check_random_state(0)
Q = rng.randn(n_targets, n_features)
Y = rng.randn(n_samples, n_targets)
X = np.dot(Y, Q) + 2 * rng.randn(n_samples, n_features) + 1
X *= 1000
X_scaled = StandardScaler().fit_transform(X)
pls = pls_.PLSRegression(n_components=5, scale=True)
pls.fit(X, Y)
score = pls.score(X, Y)
pls.fit(X_scaled, Y)
score_scaled = pls.score(X_scaled, Y)
assert_approx_equal(score, score_scaled)
|