File: kddcup99.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (320 lines) | stat: -rw-r--r-- 11,032 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""KDDCUP 99 dataset.

A classic dataset for anomaly detection.

The dataset page is available from UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz

"""

import sys
import errno
from gzip import GzipFile
import logging
import os
from os.path import dirname, exists, join

import numpy as np


from .base import _fetch_remote
from .base import get_data_home
from .base import RemoteFileMetadata
from ..externals import six
from ..utils import Bunch
from ..utils import _joblib
from ..utils import check_random_state
from ..utils import shuffle as shuffle_method

# The original data can be found at:
# http://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
ARCHIVE = RemoteFileMetadata(
    filename='kddcup99_data',
    url='https://ndownloader.figshare.com/files/5976045',
    checksum=('3b6c942aa0356c0ca35b7b595a26c89d'
              '343652c9db428893e7494f837b274292'))

# The original data can be found at:
# http://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz
ARCHIVE_10_PERCENT = RemoteFileMetadata(
    filename='kddcup99_10_data',
    url='https://ndownloader.figshare.com/files/5976042',
    checksum=('8045aca0d84e70e622d1148d7df78249'
              '6f6333bf6eb979a1b0837c42a9fd9561'))

logger = logging.getLogger(__name__)


def fetch_kddcup99(subset=None, data_home=None, shuffle=False,
                   random_state=None,
                   percent10=True, download_if_missing=True, return_X_y=False):
    """Load the kddcup99 dataset (classification).

    Download it if necessary.

    =================   ====================================
    Classes                                               23
    Samples total                                    4898431
    Dimensionality                                        41
    Features            discrete (int) or continuous (float)
    =================   ====================================

    Read more in the :ref:`User Guide <kddcup99_dataset>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    subset : None, 'SA', 'SF', 'http', 'smtp'
        To return the corresponding classical subsets of kddcup 99.
        If None, return the entire kddcup 99 dataset.

    data_home : string, optional
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
        .. versionadded:: 0.19

    shuffle : bool, default=False
        Whether to shuffle dataset.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset shuffling and for
        selection of abnormal samples if `subset='SA'`. Pass an int for
        reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    percent10 : bool, default=True
        Whether to load only 10 percent of the data.

    download_if_missing : bool, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : boolean, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object. See
        below for more information about the `data` and `target` object.

        .. versionadded:: 0.20

    Returns
    -------
    data : Bunch
        Dictionary-like object, the interesting attributes are:
         - 'data', the data to learn.
         - 'target', the regression target for each sample.
         - 'DESCR', a description of the dataset.

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.20
    """
    data_home = get_data_home(data_home=data_home)
    kddcup99 = _fetch_brute_kddcup99(data_home=data_home,
                                     percent10=percent10,
                                     download_if_missing=download_if_missing)

    data = kddcup99.data
    target = kddcup99.target

    if subset == 'SA':
        s = target == b'normal.'
        t = np.logical_not(s)
        normal_samples = data[s, :]
        normal_targets = target[s]
        abnormal_samples = data[t, :]
        abnormal_targets = target[t]

        n_samples_abnormal = abnormal_samples.shape[0]
        # selected abnormal samples:
        random_state = check_random_state(random_state)
        r = random_state.randint(0, n_samples_abnormal, 3377)
        abnormal_samples = abnormal_samples[r]
        abnormal_targets = abnormal_targets[r]

        data = np.r_[normal_samples, abnormal_samples]
        target = np.r_[normal_targets, abnormal_targets]

    if subset == 'SF' or subset == 'http' or subset == 'smtp':
        # select all samples with positive logged_in attribute:
        s = data[:, 11] == 1
        data = np.c_[data[s, :11], data[s, 12:]]
        target = target[s]

        data[:, 0] = np.log((data[:, 0] + 0.1).astype(float))
        data[:, 4] = np.log((data[:, 4] + 0.1).astype(float))
        data[:, 5] = np.log((data[:, 5] + 0.1).astype(float))

        if subset == 'http':
            s = data[:, 2] == b'http'
            data = data[s]
            target = target[s]
            data = np.c_[data[:, 0], data[:, 4], data[:, 5]]

        if subset == 'smtp':
            s = data[:, 2] == b'smtp'
            data = data[s]
            target = target[s]
            data = np.c_[data[:, 0], data[:, 4], data[:, 5]]

        if subset == 'SF':
            data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]]

    if shuffle:
        data, target = shuffle_method(data, target, random_state=random_state)

    module_path = dirname(__file__)
    with open(join(module_path, 'descr', 'kddcup99.rst')) as rst_file:
        fdescr = rst_file.read()

    if return_X_y:
        return data, target

    return Bunch(data=data, target=target, DESCR=fdescr)


def _fetch_brute_kddcup99(data_home=None,
                          download_if_missing=True, percent10=True):

    """Load the kddcup99 dataset, downloading it if necessary.

    Parameters
    ----------
    data_home : string, optional
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    download_if_missing : boolean, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    percent10 : bool, default=True
        Whether to load only 10 percent of the data.

    Returns
    -------
    dataset : dict-like object with the following attributes:
        dataset.data : numpy array of shape (494021, 41)
            Each row corresponds to the 41 features in the dataset.
        dataset.target : numpy array of shape (494021,)
            Each value corresponds to one of the 21 attack types or to the
            label 'normal.'.
        dataset.DESCR : string
            Description of the kddcup99 dataset.

    """

    data_home = get_data_home(data_home=data_home)
    if sys.version_info[0] == 3:
        # The zlib compression format use by joblib is not compatible when
        # switching from Python 2 to Python 3, let us use a separate folder
        # under Python 3:
        dir_suffix = "-py3"
    else:
        # Backward compat for Python 2 users
        dir_suffix = ""

    if percent10:
        kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix)
        archive = ARCHIVE_10_PERCENT
    else:
        kddcup_dir = join(data_home, "kddcup99" + dir_suffix)
        archive = ARCHIVE

    samples_path = join(kddcup_dir, "samples")
    targets_path = join(kddcup_dir, "targets")
    available = exists(samples_path)

    if download_if_missing and not available:
        _mkdirp(kddcup_dir)
        logger.info("Downloading %s" % archive.url)
        _fetch_remote(archive, dirname=kddcup_dir)
        dt = [('duration', int),
              ('protocol_type', 'S4'),
              ('service', 'S11'),
              ('flag', 'S6'),
              ('src_bytes', int),
              ('dst_bytes', int),
              ('land', int),
              ('wrong_fragment', int),
              ('urgent', int),
              ('hot', int),
              ('num_failed_logins', int),
              ('logged_in', int),
              ('num_compromised', int),
              ('root_shell', int),
              ('su_attempted', int),
              ('num_root', int),
              ('num_file_creations', int),
              ('num_shells', int),
              ('num_access_files', int),
              ('num_outbound_cmds', int),
              ('is_host_login', int),
              ('is_guest_login', int),
              ('count', int),
              ('srv_count', int),
              ('serror_rate', float),
              ('srv_serror_rate', float),
              ('rerror_rate', float),
              ('srv_rerror_rate', float),
              ('same_srv_rate', float),
              ('diff_srv_rate', float),
              ('srv_diff_host_rate', float),
              ('dst_host_count', int),
              ('dst_host_srv_count', int),
              ('dst_host_same_srv_rate', float),
              ('dst_host_diff_srv_rate', float),
              ('dst_host_same_src_port_rate', float),
              ('dst_host_srv_diff_host_rate', float),
              ('dst_host_serror_rate', float),
              ('dst_host_srv_serror_rate', float),
              ('dst_host_rerror_rate', float),
              ('dst_host_srv_rerror_rate', float),
              ('labels', 'S16')]
        DT = np.dtype(dt)
        logger.debug("extracting archive")
        archive_path = join(kddcup_dir, archive.filename)
        file_ = GzipFile(filename=archive_path, mode='r')
        Xy = []
        for line in file_.readlines():
            if six.PY3:
                line = line.decode()
            Xy.append(line.replace('\n', '').split(','))
        file_.close()
        logger.debug('extraction done')
        os.remove(archive_path)

        Xy = np.asarray(Xy, dtype=object)
        for j in range(42):
            Xy[:, j] = Xy[:, j].astype(DT[j])

        X = Xy[:, :-1]
        y = Xy[:, -1]
        # XXX bug when compress!=0:
        # (error: 'Incorrect data length while decompressing[...] the file
        #  could be corrupted.')

        _joblib.dump(X, samples_path, compress=0)
        _joblib.dump(y, targets_path, compress=0)
    elif not available:
        if not download_if_missing:
            raise IOError("Data not found and `download_if_missing` is False")

    try:
        X, y
    except NameError:
        X = _joblib.load(samples_path)
        y = _joblib.load(targets_path)

    return Bunch(data=X, target=y)


def _mkdirp(d):
    """Ensure directory d exists (like mkdir -p on Unix)
    No guarantee that the directory is writable.
    """
    try:
        os.makedirs(d)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise