File: mlcomp.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (114 lines) | stat: -rw-r--r-- 4,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) 2010 Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause
"""Glue code to load http://mlcomp.org data as a scikit.learn dataset"""

import os
import numbers
from sklearn.datasets.base import load_files
from sklearn.utils import deprecated


def _load_document_classification(dataset_path, metadata, set_=None, **kwargs):
    if set_ is not None:
        dataset_path = os.path.join(dataset_path, set_)
    return load_files(dataset_path, metadata.get('description'), **kwargs)


LOADERS = {
    'DocumentClassification': _load_document_classification,
    # TODO: implement the remaining domain formats
}


@deprecated("since the http://mlcomp.org/ website will shut down "
            "in March 2017, the load_mlcomp function was deprecated "
            "in version 0.19 and will be removed in 0.21.")
def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs):
    r"""Load a datasets as downloaded from http://mlcomp.org

    Read more in the :ref:`User Guide <datasets>`.

    Parameters
    ----------

    name_or_id : int or str
        The integer id or the string name metadata of the MLComp
        dataset to load

    set\_ : str, default='raw'
        Select the portion to load: 'train', 'test' or 'raw'

    mlcomp_root : str, optional
        The filesystem path to the root folder where MLComp datasets
        are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME
        environment variable is looked up instead.

    **kwargs : domain specific kwargs to be passed to the dataset loader.

    Returns
    -------

    data : Bunch
        Dictionary-like object, the interesting attributes are:
        'filenames', the files holding the raw to learn, 'target', the
        classification labels (integer index), 'target_names',
        the meaning of the labels, and 'DESCR', the full description of the
        dataset.

    Note on the lookup process: depending on the type of name_or_id,
    will choose between integer id lookup or metadata name lookup by
    looking at the unzipped archives and metadata file.

    TODO: implement zip dataset loading too
    """

    if mlcomp_root is None:
        try:
            mlcomp_root = os.environ['MLCOMP_DATASETS_HOME']
        except KeyError:
            raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined")

    mlcomp_root = os.path.expanduser(mlcomp_root)
    mlcomp_root = os.path.abspath(mlcomp_root)
    mlcomp_root = os.path.normpath(mlcomp_root)

    if not os.path.exists(mlcomp_root):
        raise ValueError("Could not find folder: " + mlcomp_root)

    # dataset lookup
    if isinstance(name_or_id, numbers.Integral):
        # id lookup
        dataset_path = os.path.join(mlcomp_root, str(name_or_id))
    else:
        # assume name based lookup
        dataset_path = None
        expected_name_line = "name: " + name_or_id
        for dataset in os.listdir(mlcomp_root):
            metadata_file = os.path.join(mlcomp_root, dataset, 'metadata')
            if not os.path.exists(metadata_file):
                continue
            with open(metadata_file) as f:
                for line in f:
                    if line.strip() == expected_name_line:
                        dataset_path = os.path.join(mlcomp_root, dataset)
                        break
        if dataset_path is None:
            raise ValueError("Could not find dataset with metadata line: " +
                             expected_name_line)

    # loading the dataset metadata
    metadata = dict()
    metadata_file = os.path.join(dataset_path, 'metadata')
    if not os.path.exists(metadata_file):
        raise ValueError(dataset_path + ' is not a valid MLComp dataset')
    with open(metadata_file) as f:
        for line in f:
            if ":" in line:
                key, value = line.split(":", 1)
                metadata[key.strip()] = value.strip()

    format = metadata.get('format', 'unknow')
    loader = LOADERS.get(format)
    if loader is None:
        raise ValueError("No loader implemented for format: " + format)
    return loader(dataset_path, metadata, set_=set_, **kwargs)