1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
"""RCV1 dataset.
The dataset page is available at
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
"""
# Author: Tom Dupre la Tour
# License: BSD 3 clause
import logging
from os import remove
from os.path import dirname, exists, join
from gzip import GzipFile
import numpy as np
import scipy.sparse as sp
from .base import get_data_home
from .base import _pkl_filepath
from .base import _fetch_remote
from .base import RemoteFileMetadata
from ..utils.fixes import makedirs
from ..utils import _joblib
from .svmlight_format import load_svmlight_files
from ..utils import shuffle as shuffle_
from ..utils import Bunch
# The original vectorized data can be found at:
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt0.dat.gz
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt1.dat.gz
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt2.dat.gz
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_test_pt3.dat.gz
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a13-vector-files/lyrl2004_vectors_train.dat.gz
# while the original stemmed token files can be found
# in the README, section B.12.i.:
# http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
XY_METADATA = (
RemoteFileMetadata(
url='https://ndownloader.figshare.com/files/5976069',
checksum=('ed40f7e418d10484091b059703eeb95a'
'e3199fe042891dcec4be6696b9968374'),
filename='lyrl2004_vectors_test_pt0.dat.gz'),
RemoteFileMetadata(
url='https://ndownloader.figshare.com/files/5976066',
checksum=('87700668ae45d45d5ca1ef6ae9bd81ab'
'0f5ec88cc95dcef9ae7838f727a13aa6'),
filename='lyrl2004_vectors_test_pt1.dat.gz'),
RemoteFileMetadata(
url='https://ndownloader.figshare.com/files/5976063',
checksum=('48143ac703cbe33299f7ae9f4995db4'
'9a258690f60e5debbff8995c34841c7f5'),
filename='lyrl2004_vectors_test_pt2.dat.gz'),
RemoteFileMetadata(
url='https://ndownloader.figshare.com/files/5976060',
checksum=('dfcb0d658311481523c6e6ca0c3f5a3'
'e1d3d12cde5d7a8ce629a9006ec7dbb39'),
filename='lyrl2004_vectors_test_pt3.dat.gz'),
RemoteFileMetadata(
url='https://ndownloader.figshare.com/files/5976057',
checksum=('5468f656d0ba7a83afc7ad44841cf9a5'
'3048a5c083eedc005dcdb5cc768924ae'),
filename='lyrl2004_vectors_train.dat.gz')
)
# The original data can be found at:
# http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a08-topic-qrels/rcv1-v2.topics.qrels.gz
TOPICS_METADATA = RemoteFileMetadata(
url='https://ndownloader.figshare.com/files/5976048',
checksum=('2a98e5e5d8b770bded93afc8930d882'
'99474317fe14181aee1466cc754d0d1c1'),
filename='rcv1v2.topics.qrels.gz')
logger = logging.getLogger(__name__)
def fetch_rcv1(data_home=None, subset='all', download_if_missing=True,
random_state=None, shuffle=False, return_X_y=False):
"""Load the RCV1 multilabel dataset (classification).
Download it if necessary.
Version: RCV1-v2, vectors, full sets, topics multilabels.
================= =====================
Classes 103
Samples total 804414
Dimensionality 47236
Features real, between 0 and 1
================= =====================
Read more in the :ref:`User Guide <rcv1_dataset>`.
.. versionadded:: 0.17
Parameters
----------
data_home : string, optional
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
subset : string, 'train', 'test', or 'all', default='all'
Select the dataset to load: 'train' for the training set
(23149 samples), 'test' for the test set (781265 samples),
'all' for both, with the training samples first if shuffle is False.
This follows the official LYRL2004 chronological split.
download_if_missing : boolean, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
random_state : int, RandomState instance or None (default)
Determines random number generation for dataset shuffling. Pass an int
for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
shuffle : bool, default=False
Whether to shuffle dataset.
return_X_y : boolean, default=False.
If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
object. See below for more information about the `dataset.data` and
`dataset.target` object.
.. versionadded:: 0.20
Returns
-------
dataset : dict-like object with the following attributes:
dataset.data : scipy csr array, dtype np.float64, shape (804414, 47236)
The array has 0.16% of non zero values.
dataset.target : scipy csr array, dtype np.uint8, shape (804414, 103)
Each sample has a value of 1 in its categories, and 0 in others.
The array has 3.15% of non zero values.
dataset.sample_id : numpy array, dtype np.uint32, shape (804414,)
Identification number of each sample, as ordered in dataset.data.
dataset.target_names : numpy array, dtype object, length (103)
Names of each target (RCV1 topics), as ordered in dataset.target.
dataset.DESCR : string
Description of the RCV1 dataset.
(data, target) : tuple if ``return_X_y`` is True
.. versionadded:: 0.20
"""
N_SAMPLES = 804414
N_FEATURES = 47236
N_CATEGORIES = 103
N_TRAIN = 23149
data_home = get_data_home(data_home=data_home)
rcv1_dir = join(data_home, "RCV1")
if download_if_missing:
if not exists(rcv1_dir):
makedirs(rcv1_dir)
samples_path = _pkl_filepath(rcv1_dir, "samples.pkl")
sample_id_path = _pkl_filepath(rcv1_dir, "sample_id.pkl")
sample_topics_path = _pkl_filepath(rcv1_dir, "sample_topics.pkl")
topics_path = _pkl_filepath(rcv1_dir, "topics_names.pkl")
# load data (X) and sample_id
if download_if_missing and (not exists(samples_path) or
not exists(sample_id_path)):
files = []
for each in XY_METADATA:
logger.info("Downloading %s" % each.url)
file_path = _fetch_remote(each, dirname=rcv1_dir)
files.append(GzipFile(filename=file_path))
Xy = load_svmlight_files(files, n_features=N_FEATURES)
# Training data is before testing data
X = sp.vstack([Xy[8], Xy[0], Xy[2], Xy[4], Xy[6]]).tocsr()
sample_id = np.hstack((Xy[9], Xy[1], Xy[3], Xy[5], Xy[7]))
sample_id = sample_id.astype(np.uint32)
_joblib.dump(X, samples_path, compress=9)
_joblib.dump(sample_id, sample_id_path, compress=9)
# delete archives
for f in files:
f.close()
remove(f.name)
else:
X = _joblib.load(samples_path)
sample_id = _joblib.load(sample_id_path)
# load target (y), categories, and sample_id_bis
if download_if_missing and (not exists(sample_topics_path) or
not exists(topics_path)):
logger.info("Downloading %s" % TOPICS_METADATA.url)
topics_archive_path = _fetch_remote(TOPICS_METADATA,
dirname=rcv1_dir)
# parse the target file
n_cat = -1
n_doc = -1
doc_previous = -1
y = np.zeros((N_SAMPLES, N_CATEGORIES), dtype=np.uint8)
sample_id_bis = np.zeros(N_SAMPLES, dtype=np.int32)
category_names = {}
with GzipFile(filename=topics_archive_path, mode='rb') as f:
for line in f:
line_components = line.decode("ascii").split(u" ")
if len(line_components) == 3:
cat, doc, _ = line_components
if cat not in category_names:
n_cat += 1
category_names[cat] = n_cat
doc = int(doc)
if doc != doc_previous:
doc_previous = doc
n_doc += 1
sample_id_bis[n_doc] = doc
y[n_doc, category_names[cat]] = 1
# delete archive
remove(topics_archive_path)
# Samples in X are ordered with sample_id,
# whereas in y, they are ordered with sample_id_bis.
permutation = _find_permutation(sample_id_bis, sample_id)
y = y[permutation, :]
# save category names in a list, with same order than y
categories = np.empty(N_CATEGORIES, dtype=object)
for k in category_names.keys():
categories[category_names[k]] = k
# reorder categories in lexicographic order
order = np.argsort(categories)
categories = categories[order]
y = sp.csr_matrix(y[:, order])
_joblib.dump(y, sample_topics_path, compress=9)
_joblib.dump(categories, topics_path, compress=9)
else:
y = _joblib.load(sample_topics_path)
categories = _joblib.load(topics_path)
if subset == 'all':
pass
elif subset == 'train':
X = X[:N_TRAIN, :]
y = y[:N_TRAIN, :]
sample_id = sample_id[:N_TRAIN]
elif subset == 'test':
X = X[N_TRAIN:, :]
y = y[N_TRAIN:, :]
sample_id = sample_id[N_TRAIN:]
else:
raise ValueError("Unknown subset parameter. Got '%s' instead of one"
" of ('all', 'train', test')" % subset)
if shuffle:
X, y, sample_id = shuffle_(X, y, sample_id, random_state=random_state)
module_path = dirname(__file__)
with open(join(module_path, 'descr', 'rcv1.rst')) as rst_file:
fdescr = rst_file.read()
if return_X_y:
return X, y
return Bunch(data=X, target=y, sample_id=sample_id,
target_names=categories, DESCR=fdescr)
def _inverse_permutation(p):
"""inverse permutation p"""
n = p.size
s = np.zeros(n, dtype=np.int32)
i = np.arange(n, dtype=np.int32)
np.put(s, p, i) # s[p] = i
return s
def _find_permutation(a, b):
"""find the permutation from a to b"""
t = np.argsort(a)
u = np.argsort(b)
u_ = _inverse_permutation(u)
return t[u_]
|