File: samples_generator.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1699 lines) | stat: -rw-r--r-- 58,792 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
"""
Generate samples of synthetic data sets.
"""

# Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel,
#          G. Louppe, J. Nothman
# License: BSD 3 clause

import numbers
import array
import numpy as np
from scipy import linalg
import scipy.sparse as sp

from ..preprocessing import MultiLabelBinarizer
from ..utils import check_array, check_random_state
from ..utils import shuffle as util_shuffle
from ..utils.fixes import _Iterable as Iterable
from ..utils.random import sample_without_replacement
from ..externals import six
map = six.moves.map
zip = six.moves.zip


def _generate_hypercube(samples, dimensions, rng):
    """Returns distinct binary samples of length dimensions
    """
    if dimensions > 30:
        return np.hstack([rng.randint(2, size=(samples, dimensions - 30)),
                          _generate_hypercube(samples, 30, rng)])
    out = sample_without_replacement(2 ** dimensions, samples,
                                     random_state=rng).astype(dtype='>u4',
                                                              copy=False)
    out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:]
    return out


def make_classification(n_samples=100, n_features=20, n_informative=2,
                        n_redundant=2, n_repeated=0, n_classes=2,
                        n_clusters_per_class=2, weights=None, flip_y=0.01,
                        class_sep=1.0, hypercube=True, shift=0.0, scale=1.0,
                        shuffle=True, random_state=None):
    """Generate a random n-class classification problem.

    This initially creates clusters of points normally distributed (std=1)
    about vertices of an ``n_informative``-dimensional hypercube with sides of
    length ``2*class_sep`` and assigns an equal number of clusters to each
    class. It introduces interdependence between these features and adds
    various types of further noise to the data.

    Without shuffling, ``X`` horizontally stacks features in the following
    order: the primary ``n_informative`` features, followed by ``n_redundant``
    linear combinations of the informative features, followed by ``n_repeated``
    duplicates, drawn randomly with replacement from the informative and
    redundant features. The remaining features are filled with random noise.
    Thus, without shuffling, all useful features are contained in the columns
    ``X[:, :n_informative + n_redundant + n_repeated]``.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=20)
        The total number of features. These comprise ``n_informative``
        informative features, ``n_redundant`` redundant features,
        ``n_repeated`` duplicated features and
        ``n_features-n_informative-n_redundant-n_repeated`` useless features
        drawn at random.

    n_informative : int, optional (default=2)
        The number of informative features. Each class is composed of a number
        of gaussian clusters each located around the vertices of a hypercube
        in a subspace of dimension ``n_informative``. For each cluster,
        informative features are drawn independently from  N(0, 1) and then
        randomly linearly combined within each cluster in order to add
        covariance. The clusters are then placed on the vertices of the
        hypercube.

    n_redundant : int, optional (default=2)
        The number of redundant features. These features are generated as
        random linear combinations of the informative features.

    n_repeated : int, optional (default=0)
        The number of duplicated features, drawn randomly from the informative
        and the redundant features.

    n_classes : int, optional (default=2)
        The number of classes (or labels) of the classification problem.

    n_clusters_per_class : int, optional (default=2)
        The number of clusters per class.

    weights : list of floats or None (default=None)
        The proportions of samples assigned to each class. If None, then
        classes are balanced. Note that if ``len(weights) == n_classes - 1``,
        then the last class weight is automatically inferred.
        More than ``n_samples`` samples may be returned if the sum of
        ``weights`` exceeds 1.

    flip_y : float, optional (default=0.01)
        The fraction of samples whose class are randomly exchanged. Larger
        values introduce noise in the labels and make the classification
        task harder.

    class_sep : float, optional (default=1.0)
        The factor multiplying the hypercube size.  Larger values spread
        out the clusters/classes and make the classification task easier.

    hypercube : boolean, optional (default=True)
        If True, the clusters are put on the vertices of a hypercube. If
        False, the clusters are put on the vertices of a random polytope.

    shift : float, array of shape [n_features] or None, optional (default=0.0)
        Shift features by the specified value. If None, then features
        are shifted by a random value drawn in [-class_sep, class_sep].

    scale : float, array of shape [n_features] or None, optional (default=1.0)
        Multiply features by the specified value. If None, then features
        are scaled by a random value drawn in [1, 100]. Note that scaling
        happens after shifting.

    shuffle : boolean, optional (default=True)
        Shuffle the samples and the features.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels for class membership of each sample.

    Notes
    -----
    The algorithm is adapted from Guyon [1] and was designed to generate
    the "Madelon" dataset.

    References
    ----------
    .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable
           selection benchmark", 2003.

    See also
    --------
    make_blobs: simplified variant
    make_multilabel_classification: unrelated generator for multilabel tasks
    """
    generator = check_random_state(random_state)

    # Count features, clusters and samples
    if n_informative + n_redundant + n_repeated > n_features:
        raise ValueError("Number of informative, redundant and repeated "
                         "features must sum to less than the number of total"
                         " features")
    # Use log2 to avoid overflow errors
    if n_informative < np.log2(n_classes * n_clusters_per_class):
        raise ValueError("n_classes * n_clusters_per_class must"
                         " be smaller or equal 2 ** n_informative")
    if weights and len(weights) not in [n_classes, n_classes - 1]:
        raise ValueError("Weights specified but incompatible with number "
                         "of classes.")

    n_useless = n_features - n_informative - n_redundant - n_repeated
    n_clusters = n_classes * n_clusters_per_class

    if weights and len(weights) == (n_classes - 1):
        weights = weights + [1.0 - sum(weights)]

    if weights is None:
        weights = [1.0 / n_classes] * n_classes
        weights[-1] = 1.0 - sum(weights[:-1])

    # Distribute samples among clusters by weight
    n_samples_per_cluster = []
    for k in range(n_clusters):
        n_samples_per_cluster.append(int(n_samples * weights[k % n_classes]
                                     / n_clusters_per_class))
    for i in range(n_samples - sum(n_samples_per_cluster)):
        n_samples_per_cluster[i % n_clusters] += 1

    # Initialize X and y
    X = np.zeros((n_samples, n_features))
    y = np.zeros(n_samples, dtype=np.int)

    # Build the polytope whose vertices become cluster centroids
    centroids = _generate_hypercube(n_clusters, n_informative,
                                    generator).astype(float)
    centroids *= 2 * class_sep
    centroids -= class_sep
    if not hypercube:
        centroids *= generator.rand(n_clusters, 1)
        centroids *= generator.rand(1, n_informative)

    # Initially draw informative features from the standard normal
    X[:, :n_informative] = generator.randn(n_samples, n_informative)

    # Create each cluster; a variant of make_blobs
    stop = 0
    for k, centroid in enumerate(centroids):
        start, stop = stop, stop + n_samples_per_cluster[k]
        y[start:stop] = k % n_classes  # assign labels
        X_k = X[start:stop, :n_informative]  # slice a view of the cluster

        A = 2 * generator.rand(n_informative, n_informative) - 1
        X_k[...] = np.dot(X_k, A)  # introduce random covariance

        X_k += centroid  # shift the cluster to a vertex

    # Create redundant features
    if n_redundant > 0:
        B = 2 * generator.rand(n_informative, n_redundant) - 1
        X[:, n_informative:n_informative + n_redundant] = \
            np.dot(X[:, :n_informative], B)

    # Repeat some features
    if n_repeated > 0:
        n = n_informative + n_redundant
        indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp)
        X[:, n:n + n_repeated] = X[:, indices]

    # Fill useless features
    if n_useless > 0:
        X[:, -n_useless:] = generator.randn(n_samples, n_useless)

    # Randomly replace labels
    if flip_y >= 0.0:
        flip_mask = generator.rand(n_samples) < flip_y
        y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum())

    # Randomly shift and scale
    if shift is None:
        shift = (2 * generator.rand(n_features) - 1) * class_sep
    X += shift

    if scale is None:
        scale = 1 + 100 * generator.rand(n_features)
    X *= scale

    if shuffle:
        # Randomly permute samples
        X, y = util_shuffle(X, y, random_state=generator)

        # Randomly permute features
        indices = np.arange(n_features)
        generator.shuffle(indices)
        X[:, :] = X[:, indices]

    return X, y


def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5,
                                   n_labels=2, length=50, allow_unlabeled=True,
                                   sparse=False, return_indicator='dense',
                                   return_distributions=False,
                                   random_state=None):
    """Generate a random multilabel classification problem.

    For each sample, the generative process is:
        - pick the number of labels: n ~ Poisson(n_labels)
        - n times, choose a class c: c ~ Multinomial(theta)
        - pick the document length: k ~ Poisson(length)
        - k times, choose a word: w ~ Multinomial(theta_c)

    In the above process, rejection sampling is used to make sure that
    n is never zero or more than `n_classes`, and that the document length
    is never zero. Likewise, we reject classes which have already been chosen.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=20)
        The total number of features.

    n_classes : int, optional (default=5)
        The number of classes of the classification problem.

    n_labels : int, optional (default=2)
        The average number of labels per instance. More precisely, the number
        of labels per sample is drawn from a Poisson distribution with
        ``n_labels`` as its expected value, but samples are bounded (using
        rejection sampling) by ``n_classes``, and must be nonzero if
        ``allow_unlabeled`` is False.

    length : int, optional (default=50)
        The sum of the features (number of words if documents) is drawn from
        a Poisson distribution with this expected value.

    allow_unlabeled : bool, optional (default=True)
        If ``True``, some instances might not belong to any class.

    sparse : bool, optional (default=False)
        If ``True``, return a sparse feature matrix

        .. versionadded:: 0.17
           parameter to allow *sparse* output.

    return_indicator : 'dense' (default) | 'sparse' | False
        If ``dense`` return ``Y`` in the dense binary indicator format. If
        ``'sparse'`` return ``Y`` in the sparse binary indicator format.
        ``False`` returns a list of lists of labels.

    return_distributions : bool, optional (default=False)
        If ``True``, return the prior class probability and conditional
        probabilities of features given classes, from which the data was
        drawn.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    Y : array or sparse CSR matrix of shape [n_samples, n_classes]
        The label sets.

    p_c : array, shape [n_classes]
        The probability of each class being drawn. Only returned if
        ``return_distributions=True``.

    p_w_c : array, shape [n_features, n_classes]
        The probability of each feature being drawn given each class.
        Only returned if ``return_distributions=True``.

    """
    generator = check_random_state(random_state)
    p_c = generator.rand(n_classes)
    p_c /= p_c.sum()
    cumulative_p_c = np.cumsum(p_c)
    p_w_c = generator.rand(n_features, n_classes)
    p_w_c /= np.sum(p_w_c, axis=0)

    def sample_example():
        _, n_classes = p_w_c.shape

        # pick a nonzero number of labels per document by rejection sampling
        y_size = n_classes + 1
        while (not allow_unlabeled and y_size == 0) or y_size > n_classes:
            y_size = generator.poisson(n_labels)

        # pick n classes
        y = set()
        while len(y) != y_size:
            # pick a class with probability P(c)
            c = np.searchsorted(cumulative_p_c,
                                generator.rand(y_size - len(y)))
            y.update(c)
        y = list(y)

        # pick a non-zero document length by rejection sampling
        n_words = 0
        while n_words == 0:
            n_words = generator.poisson(length)

        # generate a document of length n_words
        if len(y) == 0:
            # if sample does not belong to any class, generate noise word
            words = generator.randint(n_features, size=n_words)
            return words, y

        # sample words with replacement from selected classes
        cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum()
        cumulative_p_w_sample /= cumulative_p_w_sample[-1]
        words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words))
        return words, y

    X_indices = array.array('i')
    X_indptr = array.array('i', [0])
    Y = []
    for i in range(n_samples):
        words, y = sample_example()
        X_indices.extend(words)
        X_indptr.append(len(X_indices))
        Y.append(y)
    X_data = np.ones(len(X_indices), dtype=np.float64)
    X = sp.csr_matrix((X_data, X_indices, X_indptr),
                      shape=(n_samples, n_features))
    X.sum_duplicates()
    if not sparse:
        X = X.toarray()

    # return_indicator can be True due to backward compatibility
    if return_indicator in (True, 'sparse', 'dense'):
        lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse'))
        Y = lb.fit([range(n_classes)]).transform(Y)
    elif return_indicator is not False:
        raise ValueError("return_indicator must be either 'sparse', 'dense' "
                         'or False.')
    if return_distributions:
        return X, Y, p_c, p_w_c
    return X, Y


def make_hastie_10_2(n_samples=12000, random_state=None):
    """Generates data for binary classification used in
    Hastie et al. 2009, Example 10.2.

    The ten features are standard independent Gaussian and
    the target ``y`` is defined by::

      y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=12000)
        The number of samples.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, 10]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------
    .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical
           Learning Ed. 2", Springer, 2009.

    See also
    --------
    make_gaussian_quantiles: a generalization of this dataset approach
    """
    rs = check_random_state(random_state)

    shape = (n_samples, 10)
    X = rs.normal(size=shape).reshape(shape)
    y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64)
    y[y == 0.0] = -1.0

    return X, y


def make_regression(n_samples=100, n_features=100, n_informative=10,
                    n_targets=1, bias=0.0, effective_rank=None,
                    tail_strength=0.5, noise=0.0, shuffle=True, coef=False,
                    random_state=None):
    """Generate a random regression problem.

    The input set can either be well conditioned (by default) or have a low
    rank-fat tail singular profile. See :func:`make_low_rank_matrix` for
    more details.

    The output is generated by applying a (potentially biased) random linear
    regression model with `n_informative` nonzero regressors to the previously
    generated input and some gaussian centered noise with some adjustable
    scale.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=100)
        The number of features.

    n_informative : int, optional (default=10)
        The number of informative features, i.e., the number of features used
        to build the linear model used to generate the output.

    n_targets : int, optional (default=1)
        The number of regression targets, i.e., the dimension of the y output
        vector associated with a sample. By default, the output is a scalar.

    bias : float, optional (default=0.0)
        The bias term in the underlying linear model.

    effective_rank : int or None, optional (default=None)
        if not None:
            The approximate number of singular vectors required to explain most
            of the input data by linear combinations. Using this kind of
            singular spectrum in the input allows the generator to reproduce
            the correlations often observed in practice.
        if None:
            The input set is well conditioned, centered and gaussian with
            unit variance.

    tail_strength : float between 0.0 and 1.0, optional (default=0.5)
        The relative importance of the fat noisy tail of the singular values
        profile if `effective_rank` is not None.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    shuffle : boolean, optional (default=True)
        Shuffle the samples and the features.

    coef : boolean, optional (default=False)
        If True, the coefficients of the underlying linear model are returned.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The input samples.

    y : array of shape [n_samples] or [n_samples, n_targets]
        The output values.

    coef : array of shape [n_features] or [n_features, n_targets], optional
        The coefficient of the underlying linear model. It is returned only if
        coef is True.
    """
    n_informative = min(n_features, n_informative)
    generator = check_random_state(random_state)

    if effective_rank is None:
        # Randomly generate a well conditioned input set
        X = generator.randn(n_samples, n_features)

    else:
        # Randomly generate a low rank, fat tail input set
        X = make_low_rank_matrix(n_samples=n_samples,
                                 n_features=n_features,
                                 effective_rank=effective_rank,
                                 tail_strength=tail_strength,
                                 random_state=generator)

    # Generate a ground truth model with only n_informative features being non
    # zeros (the other features are not correlated to y and should be ignored
    # by a sparsifying regularizers such as L1 or elastic net)
    ground_truth = np.zeros((n_features, n_targets))
    ground_truth[:n_informative, :] = 100 * generator.rand(n_informative,
                                                           n_targets)

    y = np.dot(X, ground_truth) + bias

    # Add noise
    if noise > 0.0:
        y += generator.normal(scale=noise, size=y.shape)

    # Randomly permute samples and features
    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

        indices = np.arange(n_features)
        generator.shuffle(indices)
        X[:, :] = X[:, indices]
        ground_truth = ground_truth[indices]

    y = np.squeeze(y)

    if coef:
        return X, y, np.squeeze(ground_truth)

    else:
        return X, y


def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None,
                 factor=.8):
    """Make a large circle containing a smaller circle in 2d.

    A simple toy dataset to visualize clustering and classification
    algorithms.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The total number of points generated. If odd, the inner circle will
        have one point more than the outer circle.

    shuffle : bool, optional (default=True)
        Whether to shuffle the samples.

    noise : double or None (default=None)
        Standard deviation of Gaussian noise added to the data.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset shuffling and noise.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    factor : 0 < double < 1 (default=.8)
        Scale factor between inner and outer circle.

    Returns
    -------
    X : array of shape [n_samples, 2]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels (0 or 1) for class membership of each sample.
    """

    if factor >= 1 or factor < 0:
        raise ValueError("'factor' has to be between 0 and 1.")

    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out

    generator = check_random_state(random_state)
    # so as not to have the first point = last point, we set endpoint=False
    linspace_out = np.linspace(0, 2 * np.pi, n_samples_out, endpoint=False)
    linspace_in = np.linspace(0, 2 * np.pi, n_samples_in, endpoint=False)
    outer_circ_x = np.cos(linspace_out)
    outer_circ_y = np.sin(linspace_out)
    inner_circ_x = np.cos(linspace_in) * factor
    inner_circ_y = np.sin(linspace_in) * factor

    X = np.vstack([np.append(outer_circ_x, inner_circ_x),
                   np.append(outer_circ_y, inner_circ_y)]).T
    y = np.hstack([np.zeros(n_samples_out, dtype=np.intp),
                   np.ones(n_samples_in, dtype=np.intp)])
    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

    if noise is not None:
        X += generator.normal(scale=noise, size=X.shape)

    return X, y


def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None):
    """Make two interleaving half circles

    A simple toy dataset to visualize clustering and classification
    algorithms. Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The total number of points generated.

    shuffle : bool, optional (default=True)
        Whether to shuffle the samples.

    noise : double or None (default=None)
        Standard deviation of Gaussian noise added to the data.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset shuffling and noise.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, 2]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels (0 or 1) for class membership of each sample.
    """

    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out

    generator = check_random_state(random_state)

    outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out))
    outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out))
    inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in))
    inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5

    X = np.vstack([np.append(outer_circ_x, inner_circ_x),
                   np.append(outer_circ_y, inner_circ_y)]).T
    y = np.hstack([np.zeros(n_samples_out, dtype=np.intp),
                   np.ones(n_samples_in, dtype=np.intp)])

    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

    if noise is not None:
        X += generator.normal(scale=noise, size=X.shape)

    return X, y


def make_blobs(n_samples=100, n_features=2, centers=None, cluster_std=1.0,
               center_box=(-10.0, 10.0), shuffle=True, random_state=None):
    """Generate isotropic Gaussian blobs for clustering.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int or array-like, optional (default=100)
        If int, it is the total number of points equally divided among
        clusters.
        If array-like, each element of the sequence indicates
        the number of samples per cluster.

    n_features : int, optional (default=2)
        The number of features for each sample.

    centers : int or array of shape [n_centers, n_features], optional
        (default=None)
        The number of centers to generate, or the fixed center locations.
        If n_samples is an int and centers is None, 3 centers are generated.
        If n_samples is array-like, centers must be
        either None or an array of length equal to the length of n_samples.

    cluster_std : float or sequence of floats, optional (default=1.0)
        The standard deviation of the clusters.

    center_box : pair of floats (min, max), optional (default=(-10.0, 10.0))
        The bounding box for each cluster center when centers are
        generated at random.

    shuffle : boolean, optional (default=True)
        Shuffle the samples.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels for cluster membership of each sample.

    Examples
    --------
    >>> from sklearn.datasets.samples_generator import make_blobs
    >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2,
    ...                   random_state=0)
    >>> print(X.shape)
    (10, 2)
    >>> y
    array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0])
    >>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2,
    ...                   random_state=0)
    >>> print(X.shape)
    (10, 2)
    >>> y
    array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0])

    See also
    --------
    make_classification: a more intricate variant
    """
    generator = check_random_state(random_state)

    if isinstance(n_samples, numbers.Integral):
        # Set n_centers by looking at centers arg
        if centers is None:
            centers = 3

        if isinstance(centers, numbers.Integral):
            n_centers = centers
            centers = generator.uniform(center_box[0], center_box[1],
                                        size=(n_centers, n_features))

        else:
            centers = check_array(centers)
            n_features = centers.shape[1]
            n_centers = centers.shape[0]

    else:
        # Set n_centers by looking at [n_samples] arg
        n_centers = len(n_samples)
        if centers is None:
            centers = generator.uniform(center_box[0], center_box[1],
                                        size=(n_centers, n_features))
        try:
            assert len(centers) == n_centers
        except TypeError:
            raise ValueError("Parameter `centers` must be array-like. "
                             "Got {!r} instead".format(centers))
        except AssertionError:
            raise ValueError("Length of `n_samples` not consistent"
                             " with number of centers. Got n_samples = {} "
                             "and centers = {}".format(n_samples, centers))
        else:
            centers = check_array(centers)
            n_features = centers.shape[1]

    # stds: if cluster_std is given as list, it must be consistent
    # with the n_centers
    if (hasattr(cluster_std, "__len__") and len(cluster_std) != n_centers):
        raise ValueError("Length of `clusters_std` not consistent with "
                         "number of centers. Got centers = {} "
                         "and cluster_std = {}".format(centers, cluster_std))

    if isinstance(cluster_std, numbers.Real):
        cluster_std = np.full(len(centers), cluster_std)

    X = []
    y = []

    if isinstance(n_samples, Iterable):
        n_samples_per_center = n_samples
    else:
        n_samples_per_center = [int(n_samples // n_centers)] * n_centers

        for i in range(n_samples % n_centers):
            n_samples_per_center[i] += 1

    for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)):
        X.append(generator.normal(loc=centers[i], scale=std,
                                  size=(n, n_features)))
        y += [i] * n

    X = np.concatenate(X)
    y = np.array(y)

    if shuffle:
        total_n_samples = np.sum(n_samples)
        indices = np.arange(total_n_samples)
        generator.shuffle(indices)
        X = X[indices]
        y = y[indices]

    return X, y


def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None):
    """Generate the "Friedman #1" regression problem

    This dataset is described in Friedman [1] and Breiman [2].

    Inputs `X` are independent features uniformly distributed on the interval
    [0, 1]. The output `y` is created according to the formula::

        y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \
+ 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1).

    Out of the `n_features` features, only 5 are actually used to compute
    `y`. The remaining features are independent of `y`.

    The number of features has to be >= 5.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=10)
        The number of features. Should be at least 5.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset noise. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------
    .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals
           of Statistics 19 (1), pages 1-67, 1991.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning 24,
           pages 123-140, 1996.
    """
    if n_features < 5:
        raise ValueError("n_features must be at least five.")

    generator = check_random_state(random_state)

    X = generator.rand(n_samples, n_features)
    y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \
        + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples)

    return X, y


def make_friedman2(n_samples=100, noise=0.0, random_state=None):
    """Generate the "Friedman #2" regression problem

    This dataset is described in Friedman [1] and Breiman [2].

    Inputs `X` are 4 independent features uniformly distributed on the
    intervals::

        0 <= X[:, 0] <= 100,
        40 * pi <= X[:, 1] <= 560 * pi,
        0 <= X[:, 2] <= 1,
        1 <= X[:, 3] <= 11.

    The output `y` is created according to the formula::

        y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \
 - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1).

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset noise. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, 4]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------
    .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals
           of Statistics 19 (1), pages 1-67, 1991.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning 24,
           pages 123-140, 1996.
    """
    generator = check_random_state(random_state)

    X = generator.rand(n_samples, 4)
    X[:, 0] *= 100
    X[:, 1] *= 520 * np.pi
    X[:, 1] += 40 * np.pi
    X[:, 3] *= 10
    X[:, 3] += 1

    y = (X[:, 0] ** 2
         + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \
        + noise * generator.randn(n_samples)

    return X, y


def make_friedman3(n_samples=100, noise=0.0, random_state=None):
    """Generate the "Friedman #3" regression problem

    This dataset is described in Friedman [1] and Breiman [2].

    Inputs `X` are 4 independent features uniformly distributed on the
    intervals::

        0 <= X[:, 0] <= 100,
        40 * pi <= X[:, 1] <= 560 * pi,
        0 <= X[:, 2] <= 1,
        1 <= X[:, 3] <= 11.

    The output `y` is created according to the formula::

        y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \
/ X[:, 0]) + noise * N(0, 1).

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise applied to the output.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset noise. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, 4]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------
    .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals
           of Statistics 19 (1), pages 1-67, 1991.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning 24,
           pages 123-140, 1996.
    """
    generator = check_random_state(random_state)

    X = generator.rand(n_samples, 4)
    X[:, 0] *= 100
    X[:, 1] *= 520 * np.pi
    X[:, 1] += 40 * np.pi
    X[:, 3] *= 10
    X[:, 3] += 1

    y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \
        + noise * generator.randn(n_samples)

    return X, y


def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10,
                         tail_strength=0.5, random_state=None):
    """Generate a mostly low rank matrix with bell-shaped singular values

    Most of the variance can be explained by a bell-shaped curve of width
    effective_rank: the low rank part of the singular values profile is::

        (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2)

    The remaining singular values' tail is fat, decreasing as::

        tail_strength * exp(-0.1 * i / effective_rank).

    The low rank part of the profile can be considered the structured
    signal part of the data while the tail can be considered the noisy
    part of the data that cannot be summarized by a low number of linear
    components (singular vectors).

    This kind of singular profiles is often seen in practice, for instance:
     - gray level pictures of faces
     - TF-IDF vectors of text documents crawled from the web

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=100)
        The number of features.

    effective_rank : int, optional (default=10)
        The approximate number of singular vectors required to explain most of
        the data by linear combinations.

    tail_strength : float between 0.0 and 1.0, optional (default=0.5)
        The relative importance of the fat noisy tail of the singular values
        profile.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The matrix.
    """
    generator = check_random_state(random_state)
    n = min(n_samples, n_features)

    # Random (ortho normal) vectors
    u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic')
    v, _ = linalg.qr(generator.randn(n_features, n), mode='economic')

    # Index of the singular values
    singular_ind = np.arange(n, dtype=np.float64)

    # Build the singular profile by assembling signal and noise components
    low_rank = ((1 - tail_strength) *
                np.exp(-1.0 * (singular_ind / effective_rank) ** 2))
    tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank)
    s = np.identity(n) * (low_rank + tail)

    return np.dot(np.dot(u, s), v.T)


def make_sparse_coded_signal(n_samples, n_components, n_features,
                             n_nonzero_coefs, random_state=None):
    """Generate a signal as a sparse combination of dictionary elements.

    Returns a matrix Y = DX, such as D is (n_features, n_components),
    X is (n_components, n_samples) and each column of X has exactly
    n_nonzero_coefs non-zero elements.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int
        number of samples to generate

    n_components :  int,
        number of components in the dictionary

    n_features : int
        number of features of the dataset to generate

    n_nonzero_coefs : int
        number of active (non-zero) coefficients in each sample

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    data : array of shape [n_features, n_samples]
        The encoded signal (Y).

    dictionary : array of shape [n_features, n_components]
        The dictionary with normalized components (D).

    code : array of shape [n_components, n_samples]
        The sparse code such that each column of this matrix has exactly
        n_nonzero_coefs non-zero items (X).

    """
    generator = check_random_state(random_state)

    # generate dictionary
    D = generator.randn(n_features, n_components)
    D /= np.sqrt(np.sum((D ** 2), axis=0))

    # generate code
    X = np.zeros((n_components, n_samples))
    for i in range(n_samples):
        idx = np.arange(n_components)
        generator.shuffle(idx)
        idx = idx[:n_nonzero_coefs]
        X[idx, i] = generator.randn(n_nonzero_coefs)

    # encode signal
    Y = np.dot(D, X)

    return map(np.squeeze, (Y, D, X))


def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None):
    """Generate a random regression problem with sparse uncorrelated design

    This dataset is described in Celeux et al [1]. as::

        X ~ N(0, 1)
        y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]

    Only the first 4 features are informative. The remaining features are
    useless.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of samples.

    n_features : int, optional (default=10)
        The number of features.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The input samples.

    y : array of shape [n_samples]
        The output values.

    References
    ----------
    .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert,
           "Regularization in regression: comparing Bayesian and frequentist
           methods in a poorly informative situation", 2009.
    """
    generator = check_random_state(random_state)

    X = generator.normal(loc=0, scale=1, size=(n_samples, n_features))
    y = generator.normal(loc=(X[:, 0] +
                              2 * X[:, 1] -
                              2 * X[:, 2] -
                              1.5 * X[:, 3]), scale=np.ones(n_samples))

    return X, y


def make_spd_matrix(n_dim, random_state=None):
    """Generate a random symmetric, positive-definite matrix.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_dim : int
        The matrix dimension.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_dim, n_dim]
        The random symmetric, positive-definite matrix.

    See also
    --------
    make_sparse_spd_matrix
    """
    generator = check_random_state(random_state)

    A = generator.rand(n_dim, n_dim)
    U, s, V = linalg.svd(np.dot(A.T, A))
    X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V)

    return X


def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False,
                           smallest_coef=.1, largest_coef=.9,
                           random_state=None):
    """Generate a sparse symmetric definite positive matrix.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    dim : integer, optional (default=1)
        The size of the random matrix to generate.

    alpha : float between 0 and 1, optional (default=0.95)
        The probability that a coefficient is zero (see notes). Larger values
        enforce more sparsity.

    norm_diag : boolean, optional (default=False)
        Whether to normalize the output matrix to make the leading diagonal
        elements all 1

    smallest_coef : float between 0 and 1, optional (default=0.1)
        The value of the smallest coefficient.

    largest_coef : float between 0 and 1, optional (default=0.9)
        The value of the largest coefficient.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    prec : sparse matrix of shape (dim, dim)
        The generated matrix.

    Notes
    -----
    The sparsity is actually imposed on the cholesky factor of the matrix.
    Thus alpha does not translate directly into the filling fraction of
    the matrix itself.

    See also
    --------
    make_spd_matrix
    """
    random_state = check_random_state(random_state)

    chol = -np.eye(dim)
    aux = random_state.rand(dim, dim)
    aux[aux < alpha] = 0
    aux[aux > alpha] = (smallest_coef
                        + (largest_coef - smallest_coef)
                        * random_state.rand(np.sum(aux > alpha)))
    aux = np.tril(aux, k=-1)

    # Permute the lines: we don't want to have asymmetries in the final
    # SPD matrix
    permutation = random_state.permutation(dim)
    aux = aux[permutation].T[permutation]
    chol += aux
    prec = np.dot(chol.T, chol)

    if norm_diag:
        # Form the diagonal vector into a row matrix
        d = np.diag(prec).reshape(1, prec.shape[0])
        d = 1. / np.sqrt(d)

        prec *= d
        prec *= d.T

    return prec


def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
    """Generate a swiss roll dataset.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of sample points on the S curve.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, 3]
        The points.

    t : array of shape [n_samples]
        The univariate position of the sample according to the main dimension
        of the points in the manifold.

    Notes
    -----
    The algorithm is from Marsland [1].

    References
    ----------
    .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective",
           Chapter 10, 2009.
           http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py
    """
    generator = check_random_state(random_state)

    t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples))
    x = t * np.cos(t)
    y = 21 * generator.rand(1, n_samples)
    z = t * np.sin(t)

    X = np.concatenate((x, y, z))
    X += noise * generator.randn(3, n_samples)
    X = X.T
    t = np.squeeze(t)

    return X, t


def make_s_curve(n_samples=100, noise=0.0, random_state=None):
    """Generate an S curve dataset.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    n_samples : int, optional (default=100)
        The number of sample points on the S curve.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, 3]
        The points.

    t : array of shape [n_samples]
        The univariate position of the sample according to the main dimension
        of the points in the manifold.
    """
    generator = check_random_state(random_state)

    t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5)
    x = np.sin(t)
    y = 2.0 * generator.rand(1, n_samples)
    z = np.sign(t) * (np.cos(t) - 1)

    X = np.concatenate((x, y, z))
    X += noise * generator.randn(3, n_samples)
    X = X.T
    t = np.squeeze(t)

    return X, t


def make_gaussian_quantiles(mean=None, cov=1., n_samples=100,
                            n_features=2, n_classes=3,
                            shuffle=True, random_state=None):
    r"""Generate isotropic Gaussian and label samples by quantile

    This classification dataset is constructed by taking a multi-dimensional
    standard normal distribution and defining classes separated by nested
    concentric multi-dimensional spheres such that roughly equal numbers of
    samples are in each class (quantiles of the :math:`\chi^2` distribution).

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    mean : array of shape [n_features], optional (default=None)
        The mean of the multi-dimensional normal distribution.
        If None then use the origin (0, 0, ...).

    cov : float, optional (default=1.)
        The covariance matrix will be this value times the unit matrix. This
        dataset only produces symmetric normal distributions.

    n_samples : int, optional (default=100)
        The total number of points equally divided among classes.

    n_features : int, optional (default=2)
        The number of features for each sample.

    n_classes : int, optional (default=3)
        The number of classes

    shuffle : boolean, optional (default=True)
        Shuffle the samples.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape [n_samples, n_features]
        The generated samples.

    y : array of shape [n_samples]
        The integer labels for quantile membership of each sample.

    Notes
    -----
    The dataset is from Zhu et al [1].

    References
    ----------
    .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

    """
    if n_samples < n_classes:
        raise ValueError("n_samples must be at least n_classes")

    generator = check_random_state(random_state)

    if mean is None:
        mean = np.zeros(n_features)
    else:
        mean = np.array(mean)

    # Build multivariate normal distribution
    X = generator.multivariate_normal(mean, cov * np.identity(n_features),
                                      (n_samples,))

    # Sort by distance from origin
    idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1))
    X = X[idx, :]

    # Label by quantile
    step = n_samples // n_classes

    y = np.hstack([np.repeat(np.arange(n_classes), step),
                   np.repeat(n_classes - 1, n_samples - step * n_classes)])

    if shuffle:
        X, y = util_shuffle(X, y, random_state=generator)

    return X, y


def _shuffle(data, random_state=None):
    generator = check_random_state(random_state)
    n_rows, n_cols = data.shape
    row_idx = generator.permutation(n_rows)
    col_idx = generator.permutation(n_cols)
    result = data[row_idx][:, col_idx]
    return result, row_idx, col_idx


def make_biclusters(shape, n_clusters, noise=0.0, minval=10,
                    maxval=100, shuffle=True, random_state=None):
    """Generate an array with constant block diagonal structure for
    biclustering.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    shape : iterable (n_rows, n_cols)
        The shape of the result.

    n_clusters : integer
        The number of biclusters.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise.

    minval : int, optional (default=10)
        Minimum value of a bicluster.

    maxval : int, optional (default=100)
        Maximum value of a bicluster.

    shuffle : boolean, optional (default=True)
        Shuffle the samples.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape `shape`
        The generated array.

    rows : array of shape (n_clusters, X.shape[0],)
        The indicators for cluster membership of each row.

    cols : array of shape (n_clusters, X.shape[1],)
        The indicators for cluster membership of each column.

    References
    ----------

    .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and
        words using bipartite spectral graph partitioning. In Proceedings
        of the seventh ACM SIGKDD international conference on Knowledge
        discovery and data mining (pp. 269-274). ACM.

    See also
    --------
    make_checkerboard
    """
    generator = check_random_state(random_state)
    n_rows, n_cols = shape
    consts = generator.uniform(minval, maxval, n_clusters)

    # row and column clusters of approximately equal sizes
    row_sizes = generator.multinomial(n_rows,
                                      np.repeat(1.0 / n_clusters,
                                                n_clusters))
    col_sizes = generator.multinomial(n_cols,
                                      np.repeat(1.0 / n_clusters,
                                                n_clusters))

    row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in
                                zip(range(n_clusters), row_sizes)))
    col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in
                                zip(range(n_clusters), col_sizes)))

    result = np.zeros(shape, dtype=np.float64)
    for i in range(n_clusters):
        selector = np.outer(row_labels == i, col_labels == i)
        result[selector] += consts[i]

    if noise > 0:
        result += generator.normal(scale=noise, size=result.shape)

    if shuffle:
        result, row_idx, col_idx = _shuffle(result, random_state)
        row_labels = row_labels[row_idx]
        col_labels = col_labels[col_idx]

    rows = np.vstack([row_labels == c for c in range(n_clusters)])
    cols = np.vstack([col_labels == c for c in range(n_clusters)])

    return result, rows, cols


def make_checkerboard(shape, n_clusters, noise=0.0, minval=10,
                      maxval=100, shuffle=True, random_state=None):
    """Generate an array with block checkerboard structure for
    biclustering.

    Read more in the :ref:`User Guide <sample_generators>`.

    Parameters
    ----------
    shape : iterable (n_rows, n_cols)
        The shape of the result.

    n_clusters : integer or iterable (n_row_clusters, n_column_clusters)
        The number of row and column clusters.

    noise : float, optional (default=0.0)
        The standard deviation of the gaussian noise.

    minval : int, optional (default=10)
        Minimum value of a bicluster.

    maxval : int, optional (default=100)
        Maximum value of a bicluster.

    shuffle : boolean, optional (default=True)
        Shuffle the samples.

    random_state : int, RandomState instance or None (default)
        Determines random number generation for dataset creation. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    X : array of shape `shape`
        The generated array.

    rows : array of shape (n_clusters, X.shape[0],)
        The indicators for cluster membership of each row.

    cols : array of shape (n_clusters, X.shape[1],)
        The indicators for cluster membership of each column.


    References
    ----------

    .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003).
        Spectral biclustering of microarray data: coclustering genes
        and conditions. Genome research, 13(4), 703-716.

    See also
    --------
    make_biclusters
    """
    generator = check_random_state(random_state)

    if hasattr(n_clusters, "__len__"):
        n_row_clusters, n_col_clusters = n_clusters
    else:
        n_row_clusters = n_col_clusters = n_clusters

    # row and column clusters of approximately equal sizes
    n_rows, n_cols = shape
    row_sizes = generator.multinomial(n_rows,
                                      np.repeat(1.0 / n_row_clusters,
                                                n_row_clusters))
    col_sizes = generator.multinomial(n_cols,
                                      np.repeat(1.0 / n_col_clusters,
                                                n_col_clusters))

    row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in
                                zip(range(n_row_clusters), row_sizes)))
    col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in
                                zip(range(n_col_clusters), col_sizes)))

    result = np.zeros(shape, dtype=np.float64)
    for i in range(n_row_clusters):
        for j in range(n_col_clusters):
            selector = np.outer(row_labels == i, col_labels == j)
            result[selector] += generator.uniform(minval, maxval)

    if noise > 0:
        result += generator.normal(scale=noise, size=result.shape)

    if shuffle:
        result, row_idx, col_idx = _shuffle(result, random_state)
        row_labels = row_labels[row_idx]
        col_labels = col_labels[col_idx]

    rows = np.vstack([row_labels == label
                      for label in range(n_row_clusters)
                      for _ in range(n_col_clusters)])
    cols = np.vstack([col_labels == label
                      for _ in range(n_row_clusters)
                      for label in range(n_col_clusters)])

    return result, rows, cols