File: test_samples_generator.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (475 lines) | stat: -rw-r--r-- 20,435 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
from __future__ import division

from collections import defaultdict
from functools import partial

import numpy as np
import pytest
import scipy.sparse as sp
from sklearn.externals.six.moves import zip

from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raise_message

from sklearn.datasets import make_classification
from sklearn.datasets import make_multilabel_classification
from sklearn.datasets import make_hastie_10_2
from sklearn.datasets import make_regression
from sklearn.datasets import make_blobs
from sklearn.datasets import make_friedman1
from sklearn.datasets import make_friedman2
from sklearn.datasets import make_friedman3
from sklearn.datasets import make_low_rank_matrix
from sklearn.datasets import make_moons
from sklearn.datasets import make_circles
from sklearn.datasets import make_sparse_coded_signal
from sklearn.datasets import make_sparse_uncorrelated
from sklearn.datasets import make_spd_matrix
from sklearn.datasets import make_swiss_roll
from sklearn.datasets import make_s_curve
from sklearn.datasets import make_biclusters
from sklearn.datasets import make_checkerboard

from sklearn.utils.validation import assert_all_finite


def test_make_classification():
    weights = [0.1, 0.25]
    X, y = make_classification(n_samples=100, n_features=20, n_informative=5,
                               n_redundant=1, n_repeated=1, n_classes=3,
                               n_clusters_per_class=1, hypercube=False,
                               shift=None, scale=None, weights=weights,
                               random_state=0)

    assert_equal(weights, [0.1, 0.25])
    assert_equal(X.shape, (100, 20), "X shape mismatch")
    assert_equal(y.shape, (100,), "y shape mismatch")
    assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes")
    assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0")
    assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1")
    assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2")

    # Test for n_features > 30
    X, y = make_classification(n_samples=2000, n_features=31, n_informative=31,
                               n_redundant=0, n_repeated=0, hypercube=True,
                               scale=0.5, random_state=0)

    assert_equal(X.shape, (2000, 31), "X shape mismatch")
    assert_equal(y.shape, (2000,), "y shape mismatch")
    assert_equal(np.unique(X.view([('', X.dtype)]*X.shape[1])).view(X.dtype)
                 .reshape(-1, X.shape[1]).shape[0], 2000,
                 "Unexpected number of unique rows")


def test_make_classification_informative_features():
    """Test the construction of informative features in make_classification

    Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and
    fully-specified `weights`.
    """
    # Create very separate clusters; check that vertices are unique and
    # correspond to classes
    class_sep = 1e6
    make = partial(make_classification, class_sep=class_sep, n_redundant=0,
                   n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False)

    for n_informative, weights, n_clusters_per_class in [(2, [1], 1),
                                                         (2, [1/3] * 3, 1),
                                                         (2, [1/4] * 4, 1),
                                                         (2, [1/2] * 2, 2),
                                                         (2, [3/4, 1/4], 2),
                                                         (10, [1/3] * 3, 10),
                                                         (np.int(64), [1], 1)
                                                         ]:
        n_classes = len(weights)
        n_clusters = n_classes * n_clusters_per_class
        n_samples = n_clusters * 50

        for hypercube in (False, True):
            X, y = make(n_samples=n_samples, n_classes=n_classes,
                        weights=weights, n_features=n_informative,
                        n_informative=n_informative,
                        n_clusters_per_class=n_clusters_per_class,
                        hypercube=hypercube, random_state=0)

            assert_equal(X.shape, (n_samples, n_informative))
            assert_equal(y.shape, (n_samples,))

            # Cluster by sign, viewed as strings to allow uniquing
            signs = np.sign(X)
            signs = signs.view(dtype='|S{0}'.format(signs.strides[0]))
            unique_signs, cluster_index = np.unique(signs,
                                                    return_inverse=True)

            assert_equal(len(unique_signs), n_clusters,
                         "Wrong number of clusters, or not in distinct "
                         "quadrants")

            clusters_by_class = defaultdict(set)
            for cluster, cls in zip(cluster_index, y):
                clusters_by_class[cls].add(cluster)
            for clusters in clusters_by_class.values():
                assert_equal(len(clusters), n_clusters_per_class,
                             "Wrong number of clusters per class")
            assert_equal(len(clusters_by_class), n_classes,
                         "Wrong number of classes")

            assert_array_almost_equal(np.bincount(y) / len(y) // weights,
                                      [1] * n_classes,
                                      err_msg="Wrong number of samples "
                                              "per class")

            # Ensure on vertices of hypercube
            for cluster in range(len(unique_signs)):
                centroid = X[cluster_index == cluster].mean(axis=0)
                if hypercube:
                    assert_array_almost_equal(np.abs(centroid) / class_sep,
                                              np.ones(n_informative),
                                              decimal=5,
                                              err_msg="Clusters are not "
                                                      "centered on hypercube "
                                                      "vertices")
                else:
                    assert_raises(AssertionError,
                                  assert_array_almost_equal,
                                  np.abs(centroid) / class_sep,
                                  np.ones(n_informative),
                                  decimal=5,
                                  err_msg="Clusters should not be centered "
                                          "on hypercube vertices")

    assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5,
                  n_clusters_per_class=1)
    assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3,
                  n_clusters_per_class=2)


def test_make_multilabel_classification_return_sequences():
    for allow_unlabeled, min_length in zip((True, False), (0, 1)):
        X, Y = make_multilabel_classification(n_samples=100, n_features=20,
                                              n_classes=3, random_state=0,
                                              return_indicator=False,
                                              allow_unlabeled=allow_unlabeled)
        assert_equal(X.shape, (100, 20), "X shape mismatch")
        if not allow_unlabeled:
            assert_equal(max([max(y) for y in Y]), 2)
        assert_equal(min([len(y) for y in Y]), min_length)
        assert max([len(y) for y in Y]) <= 3


def test_make_multilabel_classification_return_indicator():
    for allow_unlabeled, min_length in zip((True, False), (0, 1)):
        X, Y = make_multilabel_classification(n_samples=25, n_features=20,
                                              n_classes=3, random_state=0,
                                              allow_unlabeled=allow_unlabeled)
        assert_equal(X.shape, (25, 20), "X shape mismatch")
        assert_equal(Y.shape, (25, 3), "Y shape mismatch")
        assert np.all(np.sum(Y, axis=0) > min_length)

    # Also test return_distributions and return_indicator with True
    X2, Y2, p_c, p_w_c = make_multilabel_classification(
        n_samples=25, n_features=20, n_classes=3, random_state=0,
        allow_unlabeled=allow_unlabeled, return_distributions=True)

    assert_array_almost_equal(X, X2)
    assert_array_equal(Y, Y2)
    assert_equal(p_c.shape, (3,))
    assert_almost_equal(p_c.sum(), 1)
    assert_equal(p_w_c.shape, (20, 3))
    assert_almost_equal(p_w_c.sum(axis=0), [1] * 3)


def test_make_multilabel_classification_return_indicator_sparse():
    for allow_unlabeled, min_length in zip((True, False), (0, 1)):
        X, Y = make_multilabel_classification(n_samples=25, n_features=20,
                                              n_classes=3, random_state=0,
                                              return_indicator='sparse',
                                              allow_unlabeled=allow_unlabeled)
        assert_equal(X.shape, (25, 20), "X shape mismatch")
        assert_equal(Y.shape, (25, 3), "Y shape mismatch")
        assert sp.issparse(Y)


def test_make_hastie_10_2():
    X, y = make_hastie_10_2(n_samples=100, random_state=0)
    assert_equal(X.shape, (100, 10), "X shape mismatch")
    assert_equal(y.shape, (100,), "y shape mismatch")
    assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes")


def test_make_regression():
    X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3,
                              effective_rank=5, coef=True, bias=0.0,
                              noise=1.0, random_state=0)

    assert_equal(X.shape, (100, 10), "X shape mismatch")
    assert_equal(y.shape, (100,), "y shape mismatch")
    assert_equal(c.shape, (10,), "coef shape mismatch")
    assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features")

    # Test that y ~= np.dot(X, c) + bias + N(0, 1.0).
    assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)

    # Test with small number of features.
    X, y = make_regression(n_samples=100, n_features=1)  # n_informative=3
    assert_equal(X.shape, (100, 1))


def test_make_regression_multitarget():
    X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3,
                              n_targets=3, coef=True, noise=1., random_state=0)

    assert_equal(X.shape, (100, 10), "X shape mismatch")
    assert_equal(y.shape, (100, 3), "y shape mismatch")
    assert_equal(c.shape, (10, 3), "coef shape mismatch")
    assert_array_equal(sum(c != 0.0), 3,
                       "Unexpected number of informative features")

    # Test that y ~= np.dot(X, c) + bias + N(0, 1.0)
    assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)


def test_make_blobs():
    cluster_stds = np.array([0.05, 0.2, 0.4])
    cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
    X, y = make_blobs(random_state=0, n_samples=50, n_features=2,
                      centers=cluster_centers, cluster_std=cluster_stds)

    assert X.shape == (50, 2), "X shape mismatch"
    assert y.shape == (50,), "y shape mismatch"
    assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs")
    for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)):
        assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std")


def test_make_blobs_n_samples_list():
    n_samples = [50, 30, 20]
    X, y = make_blobs(n_samples=n_samples, n_features=2, random_state=0)

    assert X.shape == (sum(n_samples), 2), "X shape mismatch"
    assert all(np.bincount(y, minlength=len(n_samples)) == n_samples), \
        "Incorrect number of samples per blob"


def test_make_blobs_n_samples_list_with_centers():
    n_samples = [20, 20, 20]
    centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
    cluster_stds = np.array([0.05, 0.2, 0.4])
    X, y = make_blobs(n_samples=n_samples, centers=centers,
                      cluster_std=cluster_stds, random_state=0)

    assert X.shape == (sum(n_samples), 2), "X shape mismatch"
    assert all(np.bincount(y, minlength=len(n_samples)) == n_samples), \
        "Incorrect number of samples per blob"
    for i, (ctr, std) in enumerate(zip(centers, cluster_stds)):
        assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std")


@pytest.mark.parametrize(
    "n_samples",
    [[5, 3, 0],
     np.array([5, 3, 0]),
     tuple([5, 3, 0])]
)
def test_make_blobs_n_samples_centers_none(n_samples):
    centers = None
    X, y = make_blobs(n_samples=n_samples, centers=centers, random_state=0)

    assert X.shape == (sum(n_samples), 2), "X shape mismatch"
    assert all(np.bincount(y, minlength=len(n_samples)) == n_samples), \
        "Incorrect number of samples per blob"


def test_make_blobs_error():
    n_samples = [20, 20, 20]
    centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
    cluster_stds = np.array([0.05, 0.2, 0.4])
    wrong_centers_msg = ("Length of `n_samples` not consistent "
                         "with number of centers. Got n_samples = {} "
                         "and centers = {}".format(n_samples, centers[:-1]))
    assert_raise_message(ValueError, wrong_centers_msg,
                         make_blobs, n_samples, centers=centers[:-1])
    wrong_std_msg = ("Length of `clusters_std` not consistent with "
                     "number of centers. Got centers = {} "
                     "and cluster_std = {}".format(centers, cluster_stds[:-1]))
    assert_raise_message(ValueError, wrong_std_msg,
                         make_blobs, n_samples,
                         centers=centers, cluster_std=cluster_stds[:-1])
    wrong_type_msg = ("Parameter `centers` must be array-like. "
                      "Got {!r} instead".format(3))
    assert_raise_message(ValueError, wrong_type_msg,
                         make_blobs, n_samples, centers=3)


def test_make_friedman1():
    X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0,
                          random_state=0)

    assert_equal(X.shape, (5, 10), "X shape mismatch")
    assert_equal(y.shape, (5,), "y shape mismatch")

    assert_array_almost_equal(y,
                              10 * np.sin(np.pi * X[:, 0] * X[:, 1])
                              + 20 * (X[:, 2] - 0.5) ** 2
                              + 10 * X[:, 3] + 5 * X[:, 4])


def test_make_friedman2():
    X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0)

    assert_equal(X.shape, (5, 4), "X shape mismatch")
    assert_equal(y.shape, (5,), "y shape mismatch")

    assert_array_almost_equal(y,
                              (X[:, 0] ** 2
                               + (X[:, 1] * X[:, 2] - 1
                                  / (X[:, 1] * X[:, 3])) ** 2) ** 0.5)


def test_make_friedman3():
    X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0)

    assert_equal(X.shape, (5, 4), "X shape mismatch")
    assert_equal(y.shape, (5,), "y shape mismatch")

    assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2]
                                            - 1 / (X[:, 1] * X[:, 3]))
                                           / X[:, 0]))


def test_make_low_rank_matrix():
    X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5,
                             tail_strength=0.01, random_state=0)

    assert_equal(X.shape, (50, 25), "X shape mismatch")

    from numpy.linalg import svd
    u, s, v = svd(X)
    assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5")


def test_make_sparse_coded_signal():
    Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8,
                                       n_features=10, n_nonzero_coefs=3,
                                       random_state=0)
    assert_equal(Y.shape, (10, 5), "Y shape mismatch")
    assert_equal(D.shape, (10, 8), "D shape mismatch")
    assert_equal(X.shape, (8, 5), "X shape mismatch")
    for col in X.T:
        assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch')
    assert_array_almost_equal(np.dot(D, X), Y)
    assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)),
                              np.ones(D.shape[1]))


def test_make_sparse_uncorrelated():
    X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0)

    assert_equal(X.shape, (5, 10), "X shape mismatch")
    assert_equal(y.shape, (5,), "y shape mismatch")


def test_make_spd_matrix():
    X = make_spd_matrix(n_dim=5, random_state=0)

    assert_equal(X.shape, (5, 5), "X shape mismatch")
    assert_array_almost_equal(X, X.T)

    from numpy.linalg import eig
    eigenvalues, _ = eig(X)
    assert_array_equal(eigenvalues > 0, np.array([True] * 5),
                       "X is not positive-definite")


def test_make_swiss_roll():
    X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0)

    assert_equal(X.shape, (5, 3), "X shape mismatch")
    assert_equal(t.shape, (5,), "t shape mismatch")
    assert_array_almost_equal(X[:, 0], t * np.cos(t))
    assert_array_almost_equal(X[:, 2], t * np.sin(t))


def test_make_s_curve():
    X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0)

    assert_equal(X.shape, (5, 3), "X shape mismatch")
    assert_equal(t.shape, (5,), "t shape mismatch")
    assert_array_almost_equal(X[:, 0], np.sin(t))
    assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1))


def test_make_biclusters():
    X, rows, cols = make_biclusters(
        shape=(100, 100), n_clusters=4, shuffle=True, random_state=0)
    assert_equal(X.shape, (100, 100), "X shape mismatch")
    assert_equal(rows.shape, (4, 100), "rows shape mismatch")
    assert_equal(cols.shape, (4, 100,), "columns shape mismatch")
    assert_all_finite(X)
    assert_all_finite(rows)
    assert_all_finite(cols)

    X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4,
                               shuffle=True, random_state=0)
    assert_array_almost_equal(X, X2)


def test_make_checkerboard():
    X, rows, cols = make_checkerboard(
        shape=(100, 100), n_clusters=(20, 5),
        shuffle=True, random_state=0)
    assert_equal(X.shape, (100, 100), "X shape mismatch")
    assert_equal(rows.shape, (100, 100), "rows shape mismatch")
    assert_equal(cols.shape, (100, 100,), "columns shape mismatch")

    X, rows, cols = make_checkerboard(
        shape=(100, 100), n_clusters=2, shuffle=True, random_state=0)
    assert_all_finite(X)
    assert_all_finite(rows)
    assert_all_finite(cols)

    X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2,
                                 shuffle=True, random_state=0)
    X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2,
                                 shuffle=True, random_state=0)
    assert_array_almost_equal(X1, X2)


def test_make_moons():
    X, y = make_moons(3, shuffle=False)
    for x, label in zip(X, y):
        center = [0.0, 0.0] if label == 0 else [1.0, 0.5]
        dist_sqr = ((x - center) ** 2).sum()
        assert_almost_equal(dist_sqr, 1.0,
                            err_msg="Point is not on expected unit circle")


def test_make_circles():
    factor = 0.3

    for (n_samples, n_outer, n_inner) in [(7, 3, 4), (8, 4, 4)]:
        # Testing odd and even case, because in the past make_circles always
        # created an even number of samples.
        X, y = make_circles(n_samples, shuffle=False, noise=None,
                            factor=factor)
        assert_equal(X.shape, (n_samples, 2), "X shape mismatch")
        assert_equal(y.shape, (n_samples,), "y shape mismatch")
        center = [0.0, 0.0]
        for x, label in zip(X, y):
            dist_sqr = ((x - center) ** 2).sum()
            dist_exp = 1.0 if label == 0 else factor**2
            assert_almost_equal(dist_sqr, dist_exp,
                                err_msg="Point is not on expected circle")

        assert_equal(X[y == 0].shape, (n_outer, 2),
                     "Samples not correctly distributed across circles.")
        assert_equal(X[y == 1].shape, (n_inner, 2),
                     "Samples not correctly distributed across circles.")

    assert_raises(ValueError, make_circles, factor=-0.01)
    assert_raises(ValueError, make_circles, factor=1.)