1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
"""Factor Analysis.
A latent linear variable model.
FactorAnalysis is similar to probabilistic PCA implemented by PCA.score
While PCA assumes Gaussian noise with the same variance for each
feature, the FactorAnalysis model assumes different variances for
each of them.
This implementation is based on David Barber's Book,
Bayesian Reasoning and Machine Learning,
http://www.cs.ucl.ac.uk/staff/d.barber/brml,
Algorithm 21.1
"""
# Author: Christian Osendorfer <osendorf@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
# License: BSD3
import warnings
from math import sqrt, log
import numpy as np
from scipy import linalg
from ..base import BaseEstimator, TransformerMixin
from ..externals.six.moves import xrange
from ..utils import check_array, check_random_state
from ..utils.extmath import fast_logdet, randomized_svd, squared_norm
from ..utils.validation import check_is_fitted
from ..exceptions import ConvergenceWarning
class FactorAnalysis(BaseEstimator, TransformerMixin):
"""Factor Analysis (FA)
A simple linear generative model with Gaussian latent variables.
The observations are assumed to be caused by a linear transformation of
lower dimensional latent factors and added Gaussian noise.
Without loss of generality the factors are distributed according to a
Gaussian with zero mean and unit covariance. The noise is also zero mean
and has an arbitrary diagonal covariance matrix.
If we would restrict the model further, by assuming that the Gaussian
noise is even isotropic (all diagonal entries are the same) we would obtain
:class:`PPCA`.
FactorAnalysis performs a maximum likelihood estimate of the so-called
`loading` matrix, the transformation of the latent variables to the
observed ones, using expectation-maximization (EM).
Read more in the :ref:`User Guide <FA>`.
Parameters
----------
n_components : int | None
Dimensionality of latent space, the number of components
of ``X`` that are obtained after ``transform``.
If None, n_components is set to the number of features.
tol : float
Stopping tolerance for EM algorithm.
copy : bool
Whether to make a copy of X. If ``False``, the input X gets overwritten
during fitting.
max_iter : int
Maximum number of iterations.
noise_variance_init : None | array, shape=(n_features,)
The initial guess of the noise variance for each feature.
If None, it defaults to np.ones(n_features)
svd_method : {'lapack', 'randomized'}
Which SVD method to use. If 'lapack' use standard SVD from
scipy.linalg, if 'randomized' use fast ``randomized_svd`` function.
Defaults to 'randomized'. For most applications 'randomized' will
be sufficiently precise while providing significant speed gains.
Accuracy can also be improved by setting higher values for
`iterated_power`. If this is not sufficient, for maximum precision
you should choose 'lapack'.
iterated_power : int, optional
Number of iterations for the power method. 3 by default. Only used
if ``svd_method`` equals 'randomized'
random_state : int, RandomState instance or None, optional (default=0)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`. Only used when ``svd_method`` equals 'randomized'.
Attributes
----------
components_ : array, [n_components, n_features]
Components with maximum variance.
loglike_ : list, [n_iterations]
The log likelihood at each iteration.
noise_variance_ : array, shape=(n_features,)
The estimated noise variance for each feature.
n_iter_ : int
Number of iterations run.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import FactorAnalysis
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = FactorAnalysis(n_components=7, random_state=0)
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)
References
----------
.. David Barber, Bayesian Reasoning and Machine Learning,
Algorithm 21.1
.. Christopher M. Bishop: Pattern Recognition and Machine Learning,
Chapter 12.2.4
See also
--------
PCA: Principal component analysis is also a latent linear variable model
which however assumes equal noise variance for each feature.
This extra assumption makes probabilistic PCA faster as it can be
computed in closed form.
FastICA: Independent component analysis, a latent variable model with
non-Gaussian latent variables.
"""
def __init__(self, n_components=None, tol=1e-2, copy=True, max_iter=1000,
noise_variance_init=None, svd_method='randomized',
iterated_power=3, random_state=0):
self.n_components = n_components
self.copy = copy
self.tol = tol
self.max_iter = max_iter
if svd_method not in ['lapack', 'randomized']:
raise ValueError('SVD method %s is not supported. Please consider'
' the documentation' % svd_method)
self.svd_method = svd_method
self.noise_variance_init = noise_variance_init
self.iterated_power = iterated_power
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the FactorAnalysis model to X using EM
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
y : Ignored
Returns
-------
self
"""
X = check_array(X, copy=self.copy, dtype=np.float64)
n_samples, n_features = X.shape
n_components = self.n_components
if n_components is None:
n_components = n_features
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
# some constant terms
nsqrt = sqrt(n_samples)
llconst = n_features * log(2. * np.pi) + n_components
var = np.var(X, axis=0)
if self.noise_variance_init is None:
psi = np.ones(n_features, dtype=X.dtype)
else:
if len(self.noise_variance_init) != n_features:
raise ValueError("noise_variance_init dimension does not "
"with number of features : %d != %d" %
(len(self.noise_variance_init), n_features))
psi = np.array(self.noise_variance_init)
loglike = []
old_ll = -np.inf
SMALL = 1e-12
# we'll modify svd outputs to return unexplained variance
# to allow for unified computation of loglikelihood
if self.svd_method == 'lapack':
def my_svd(X):
_, s, V = linalg.svd(X, full_matrices=False)
return (s[:n_components], V[:n_components],
squared_norm(s[n_components:]))
elif self.svd_method == 'randomized':
random_state = check_random_state(self.random_state)
def my_svd(X):
_, s, V = randomized_svd(X, n_components,
random_state=random_state,
n_iter=self.iterated_power)
return s, V, squared_norm(X) - squared_norm(s)
else:
raise ValueError('SVD method %s is not supported. Please consider'
' the documentation' % self.svd_method)
for i in xrange(self.max_iter):
# SMALL helps numerics
sqrt_psi = np.sqrt(psi) + SMALL
s, V, unexp_var = my_svd(X / (sqrt_psi * nsqrt))
s **= 2
# Use 'maximum' here to avoid sqrt problems.
W = np.sqrt(np.maximum(s - 1., 0.))[:, np.newaxis] * V
del V
W *= sqrt_psi
# loglikelihood
ll = llconst + np.sum(np.log(s))
ll += unexp_var + np.sum(np.log(psi))
ll *= -n_samples / 2.
loglike.append(ll)
if (ll - old_ll) < self.tol:
break
old_ll = ll
psi = np.maximum(var - np.sum(W ** 2, axis=0), SMALL)
else:
warnings.warn('FactorAnalysis did not converge.' +
' You might want' +
' to increase the number of iterations.',
ConvergenceWarning)
self.components_ = W
self.noise_variance_ = psi
self.loglike_ = loglike
self.n_iter_ = i + 1
return self
def transform(self, X):
"""Apply dimensionality reduction to X using the model.
Compute the expected mean of the latent variables.
See Barber, 21.2.33 (or Bishop, 12.66).
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
The latent variables of X.
"""
check_is_fitted(self, 'components_')
X = check_array(X)
Ih = np.eye(len(self.components_))
X_transformed = X - self.mean_
Wpsi = self.components_ / self.noise_variance_
cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
tmp = np.dot(X_transformed, Wpsi.T)
X_transformed = np.dot(tmp, cov_z)
return X_transformed
def get_covariance(self):
"""Compute data covariance with the FactorAnalysis model.
``cov = components_.T * components_ + diag(noise_variance)``
Returns
-------
cov : array, shape (n_features, n_features)
Estimated covariance of data.
"""
check_is_fitted(self, 'components_')
cov = np.dot(self.components_.T, self.components_)
cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace
return cov
def get_precision(self):
"""Compute data precision matrix with the FactorAnalysis model.
Returns
-------
precision : array, shape (n_features, n_features)
Estimated precision of data.
"""
check_is_fitted(self, 'components_')
n_features = self.components_.shape[1]
# handle corner cases first
if self.n_components == 0:
return np.diag(1. / self.noise_variance_)
if self.n_components == n_features:
return linalg.inv(self.get_covariance())
# Get precision using matrix inversion lemma
components_ = self.components_
precision = np.dot(components_ / self.noise_variance_, components_.T)
precision.flat[::len(precision) + 1] += 1.
precision = np.dot(components_.T,
np.dot(linalg.inv(precision), components_))
precision /= self.noise_variance_[:, np.newaxis]
precision /= -self.noise_variance_[np.newaxis, :]
precision.flat[::len(precision) + 1] += 1. / self.noise_variance_
return precision
def score_samples(self, X):
"""Compute the log-likelihood of each sample
Parameters
----------
X : array, shape (n_samples, n_features)
The data
Returns
-------
ll : array, shape (n_samples,)
Log-likelihood of each sample under the current model
"""
check_is_fitted(self, 'components_')
Xr = X - self.mean_
precision = self.get_precision()
n_features = X.shape[1]
log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
log_like -= .5 * (n_features * log(2. * np.pi)
- fast_logdet(precision))
return log_like
def score(self, X, y=None):
"""Compute the average log-likelihood of the samples
Parameters
----------
X : array, shape (n_samples, n_features)
The data
y : Ignored
Returns
-------
ll : float
Average log-likelihood of the samples under the current model
"""
return np.mean(self.score_samples(X))
|