File: online_lda.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (832 lines) | stat: -rw-r--r-- 31,508 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
"""

=============================================================
Online Latent Dirichlet Allocation with variational inference
=============================================================

This implementation is modified from Matthew D. Hoffman's onlineldavb code
Link: https://github.com/blei-lab/onlineldavb
"""

# Author: Chyi-Kwei Yau
# Author: Matthew D. Hoffman (original onlineldavb implementation)

import numpy as np
import scipy.sparse as sp
from scipy.special import gammaln
import warnings

from ..base import BaseEstimator, TransformerMixin
from ..utils import (check_random_state, check_array,
                     gen_batches, gen_even_slices)
from ..utils.fixes import logsumexp
from ..utils.validation import check_non_negative
from ..utils._joblib import Parallel, delayed, effective_n_jobs
from ..externals.six.moves import xrange
from ..exceptions import NotFittedError

from ._online_lda import (mean_change, _dirichlet_expectation_1d,
                          _dirichlet_expectation_2d)

EPS = np.finfo(np.float).eps


def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior,
                             max_iters,
                             mean_change_tol, cal_sstats, random_state):
    """E-step: update document-topic distribution.

    Parameters
    ----------
    X : array-like or sparse matrix, shape=(n_samples, n_features)
        Document word matrix.

    exp_topic_word_distr : dense matrix, shape=(n_topics, n_features)
        Exponential value of expectation of log topic word distribution.
        In the literature, this is `exp(E[log(beta)])`.

    doc_topic_prior : float
        Prior of document topic distribution `theta`.

    max_iters : int
        Max number of iterations for updating document topic distribution in
        the E-step.

    mean_change_tol : float
        Stopping tolerance for updating document topic distribution in E-setp.

    cal_sstats : boolean
        Parameter that indicate to calculate sufficient statistics or not.
        Set `cal_sstats` to `True` when we need to run M-step.

    random_state : RandomState instance or None
        Parameter that indicate how to initialize document topic distribution.
        Set `random_state` to None will initialize document topic distribution
        to a constant number.

    Returns
    -------
    (doc_topic_distr, suff_stats) :
        `doc_topic_distr` is unnormalized topic distribution for each document.
        In the literature, this is `gamma`. we can calculate `E[log(theta)]`
        from it.
        `suff_stats` is expected sufficient statistics for the M-step.
            When `cal_sstats == False`, this will be None.

    """
    is_sparse_x = sp.issparse(X)
    n_samples, n_features = X.shape
    n_topics = exp_topic_word_distr.shape[0]

    if random_state:
        doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics))
    else:
        doc_topic_distr = np.ones((n_samples, n_topics))

    # In the literature, this is `exp(E[log(theta)])`
    exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr))

    # diff on `component_` (only calculate it when `cal_diff` is True)
    suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None

    if is_sparse_x:
        X_data = X.data
        X_indices = X.indices
        X_indptr = X.indptr

    for idx_d in xrange(n_samples):
        if is_sparse_x:
            ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
            cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
        else:
            ids = np.nonzero(X[idx_d, :])[0]
            cnts = X[idx_d, ids]

        doc_topic_d = doc_topic_distr[idx_d, :]
        # The next one is a copy, since the inner loop overwrites it.
        exp_doc_topic_d = exp_doc_topic[idx_d, :].copy()
        exp_topic_word_d = exp_topic_word_distr[:, ids]

        # Iterate between `doc_topic_d` and `norm_phi` until convergence
        for _ in xrange(0, max_iters):
            last_d = doc_topic_d

            # The optimal phi_{dwk} is proportional to
            # exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]).
            norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS

            doc_topic_d = (exp_doc_topic_d *
                           np.dot(cnts / norm_phi, exp_topic_word_d.T))
            # Note: adds doc_topic_prior to doc_topic_d, in-place.
            _dirichlet_expectation_1d(doc_topic_d, doc_topic_prior,
                                      exp_doc_topic_d)

            if mean_change(last_d, doc_topic_d) < mean_change_tol:
                break
        doc_topic_distr[idx_d, :] = doc_topic_d

        # Contribution of document d to the expected sufficient
        # statistics for the M step.
        if cal_sstats:
            norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS
            suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi)

    return (doc_topic_distr, suff_stats)


class LatentDirichletAllocation(BaseEstimator, TransformerMixin):
    """Latent Dirichlet Allocation with online variational Bayes algorithm

    .. versionadded:: 0.17

    Read more in the :ref:`User Guide <LatentDirichletAllocation>`.

    Parameters
    ----------
    n_components : int, optional (default=10)
        Number of topics.

    doc_topic_prior : float, optional (default=None)
        Prior of document topic distribution `theta`. If the value is None,
        defaults to `1 / n_components`.
        In [1]_, this is called `alpha`.

    topic_word_prior : float, optional (default=None)
        Prior of topic word distribution `beta`. If the value is None, defaults
        to `1 / n_components`.
        In [1]_, this is called `eta`.

    learning_method : 'batch' | 'online', default='batch'
        Method used to update `_component`. Only used in `fit` method.
        In general, if the data size is large, the online update will be much
        faster than the batch update.

        Valid options::

            'batch': Batch variational Bayes method. Use all training data in
                each EM update.
                Old `components_` will be overwritten in each iteration.
            'online': Online variational Bayes method. In each EM update, use
                mini-batch of training data to update the ``components_``
                variable incrementally. The learning rate is controlled by the
                ``learning_decay`` and the ``learning_offset`` parameters.

        .. versionchanged:: 0.20
            The default learning method is now ``"batch"``.

    learning_decay : float, optional (default=0.7)
        It is a parameter that control learning rate in the online learning
        method. The value should be set between (0.5, 1.0] to guarantee
        asymptotic convergence. When the value is 0.0 and batch_size is
        ``n_samples``, the update method is same as batch learning. In the
        literature, this is called kappa.

    learning_offset : float, optional (default=10.)
        A (positive) parameter that downweights early iterations in online
        learning.  It should be greater than 1.0. In the literature, this is
        called tau_0.

    max_iter : integer, optional (default=10)
        The maximum number of iterations.

    batch_size : int, optional (default=128)
        Number of documents to use in each EM iteration. Only used in online
        learning.

    evaluate_every : int, optional (default=0)
        How often to evaluate perplexity. Only used in `fit` method.
        set it to 0 or negative number to not evalute perplexity in
        training at all. Evaluating perplexity can help you check convergence
        in training process, but it will also increase total training time.
        Evaluating perplexity in every iteration might increase training time
        up to two-fold.

    total_samples : int, optional (default=1e6)
        Total number of documents. Only used in the `partial_fit` method.

    perp_tol : float, optional (default=1e-1)
        Perplexity tolerance in batch learning. Only used when
        ``evaluate_every`` is greater than 0.

    mean_change_tol : float, optional (default=1e-3)
        Stopping tolerance for updating document topic distribution in E-step.

    max_doc_update_iter : int (default=100)
        Max number of iterations for updating document topic distribution in
        the E-step.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use in the E-step.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int, optional (default=0)
        Verbosity level.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    n_topics : int, optional (default=None)
        This parameter has been renamed to n_components and will
        be removed in version 0.21.
        .. deprecated:: 0.19

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Variational parameters for topic word distribution. Since the complete
        conditional for topic word distribution is a Dirichlet,
        ``components_[i, j]`` can be viewed as pseudocount that represents the
        number of times word `j` was assigned to topic `i`.
        It can also be viewed as distribution over the words for each topic
        after normalization:
        ``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``.

    n_batch_iter_ : int
        Number of iterations of the EM step.

    n_iter_ : int
        Number of passes over the dataset.

    Examples
    --------
    >>> from sklearn.decomposition import LatentDirichletAllocation
    >>> from sklearn.datasets import make_multilabel_classification
    >>> # This produces a feature matrix of token counts, similar to what
    >>> # CountVectorizer would produce on text.
    >>> X, _ = make_multilabel_classification(random_state=0)
    >>> lda = LatentDirichletAllocation(n_components=5,
    ...     random_state=0)
    >>> lda.fit(X) # doctest: +ELLIPSIS
    LatentDirichletAllocation(...)
    >>> # get topics for some given samples:
    >>> lda.transform(X[-2:])
    array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
           [0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586  ]])

    References
    ----------
    [1] "Online Learning for Latent Dirichlet Allocation", Matthew D. Hoffman,
        David M. Blei, Francis Bach, 2010

    [2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei,
        Chong Wang, John Paisley, 2013

    [3] Matthew D. Hoffman's onlineldavb code. Link:
        https://github.com/blei-lab/onlineldavb

    """

    def __init__(self, n_components=10, doc_topic_prior=None,
                 topic_word_prior=None, learning_method='batch',
                 learning_decay=.7, learning_offset=10., max_iter=10,
                 batch_size=128, evaluate_every=-1, total_samples=1e6,
                 perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100,
                 n_jobs=None, verbose=0, random_state=None, n_topics=None):
        self.n_components = n_components
        self.doc_topic_prior = doc_topic_prior
        self.topic_word_prior = topic_word_prior
        self.learning_method = learning_method
        self.learning_decay = learning_decay
        self.learning_offset = learning_offset
        self.max_iter = max_iter
        self.batch_size = batch_size
        self.evaluate_every = evaluate_every
        self.total_samples = total_samples
        self.perp_tol = perp_tol
        self.mean_change_tol = mean_change_tol
        self.max_doc_update_iter = max_doc_update_iter
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.random_state = random_state
        self.n_topics = n_topics

    def _check_params(self):
        """Check model parameters."""
        if self.n_topics is not None:
            self._n_components = self.n_topics
            warnings.warn("n_topics has been renamed to n_components in "
                          "version 0.19 and will be removed in 0.21",
                          DeprecationWarning)
        else:
            self._n_components = self.n_components

        if self._n_components <= 0:
            raise ValueError("Invalid 'n_components' parameter: %r"
                             % self._n_components)

        if self.total_samples <= 0:
            raise ValueError("Invalid 'total_samples' parameter: %r"
                             % self.total_samples)

        if self.learning_offset < 0:
            raise ValueError("Invalid 'learning_offset' parameter: %r"
                             % self.learning_offset)

        if self.learning_method not in ("batch", "online"):
            raise ValueError("Invalid 'learning_method' parameter: %r"
                             % self.learning_method)

    def _init_latent_vars(self, n_features):
        """Initialize latent variables."""

        self.random_state_ = check_random_state(self.random_state)
        self.n_batch_iter_ = 1
        self.n_iter_ = 0

        if self.doc_topic_prior is None:
            self.doc_topic_prior_ = 1. / self._n_components
        else:
            self.doc_topic_prior_ = self.doc_topic_prior

        if self.topic_word_prior is None:
            self.topic_word_prior_ = 1. / self._n_components
        else:
            self.topic_word_prior_ = self.topic_word_prior

        init_gamma = 100.
        init_var = 1. / init_gamma
        # In the literature, this is called `lambda`
        self.components_ = self.random_state_.gamma(
            init_gamma, init_var, (self._n_components, n_features))

        # In the literature, this is `exp(E[log(beta)])`
        self.exp_dirichlet_component_ = np.exp(
            _dirichlet_expectation_2d(self.components_))

    def _e_step(self, X, cal_sstats, random_init, parallel=None):
        """E-step in EM update.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        cal_sstats : boolean
            Parameter that indicate whether to calculate sufficient statistics
            or not. Set ``cal_sstats`` to True when we need to run M-step.

        random_init : boolean
            Parameter that indicate whether to initialize document topic
            distribution randomly in the E-step. Set it to True in training
            steps.

        parallel : joblib.Parallel (optional)
            Pre-initialized instance of joblib.Parallel.

        Returns
        -------
        (doc_topic_distr, suff_stats) :
            `doc_topic_distr` is unnormalized topic distribution for each
            document. In the literature, this is called `gamma`.
            `suff_stats` is expected sufficient statistics for the M-step.
            When `cal_sstats == False`, it will be None.

        """

        # Run e-step in parallel
        random_state = self.random_state_ if random_init else None

        # TODO: make Parallel._effective_n_jobs public instead?
        n_jobs = effective_n_jobs(self.n_jobs)
        if parallel is None:
            parallel = Parallel(n_jobs=n_jobs, verbose=max(0,
                                self.verbose - 1))
        results = parallel(
            delayed(_update_doc_distribution)(X[idx_slice, :],
                                              self.exp_dirichlet_component_,
                                              self.doc_topic_prior_,
                                              self.max_doc_update_iter,
                                              self.mean_change_tol, cal_sstats,
                                              random_state)
            for idx_slice in gen_even_slices(X.shape[0], n_jobs))

        # merge result
        doc_topics, sstats_list = zip(*results)
        doc_topic_distr = np.vstack(doc_topics)

        if cal_sstats:
            # This step finishes computing the sufficient statistics for the
            # M-step.
            suff_stats = np.zeros(self.components_.shape)
            for sstats in sstats_list:
                suff_stats += sstats
            suff_stats *= self.exp_dirichlet_component_
        else:
            suff_stats = None

        return (doc_topic_distr, suff_stats)

    def _em_step(self, X, total_samples, batch_update, parallel=None):
        """EM update for 1 iteration.

        update `_component` by batch VB or online VB.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        total_samples : integer
            Total number of documents. It is only used when
            batch_update is `False`.

        batch_update : boolean
            Parameter that controls updating method.
            `True` for batch learning, `False` for online learning.

        parallel : joblib.Parallel
            Pre-initialized instance of joblib.Parallel

        Returns
        -------
        doc_topic_distr : array, shape=(n_samples, n_components)
            Unnormalized document topic distribution.
        """

        # E-step
        _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
                                     parallel=parallel)

        # M-step
        if batch_update:
            self.components_ = self.topic_word_prior_ + suff_stats
        else:
            # online update
            # In the literature, the weight is `rho`
            weight = np.power(self.learning_offset + self.n_batch_iter_,
                              -self.learning_decay)
            doc_ratio = float(total_samples) / X.shape[0]
            self.components_ *= (1 - weight)
            self.components_ += (weight * (self.topic_word_prior_
                                           + doc_ratio * suff_stats))

        # update `component_` related variables
        self.exp_dirichlet_component_ = np.exp(
            _dirichlet_expectation_2d(self.components_))
        self.n_batch_iter_ += 1
        return

    def _check_non_neg_array(self, X, whom):
        """check X format

        check X format and make sure no negative value in X.

        Parameters
        ----------
        X :  array-like or sparse matrix

        """
        X = check_array(X, accept_sparse='csr')
        check_non_negative(X, whom)
        return X

    def partial_fit(self, X, y=None):
        """Online VB with Mini-Batch update.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        y : Ignored

        Returns
        -------
        self
        """
        self._check_params()
        X = self._check_non_neg_array(X,
                                      "LatentDirichletAllocation.partial_fit")
        n_samples, n_features = X.shape
        batch_size = self.batch_size

        # initialize parameters or check
        if not hasattr(self, 'components_'):
            self._init_latent_vars(n_features)

        if n_features != self.components_.shape[1]:
            raise ValueError(
                "The provided data has %d dimensions while "
                "the model was trained with feature size %d." %
                (n_features, self.components_.shape[1]))

        n_jobs = effective_n_jobs(self.n_jobs)
        with Parallel(n_jobs=n_jobs, verbose=max(0,
                      self.verbose - 1)) as parallel:
            for idx_slice in gen_batches(n_samples, batch_size):
                self._em_step(X[idx_slice, :],
                              total_samples=self.total_samples,
                              batch_update=False,
                              parallel=parallel)

        return self

    def fit(self, X, y=None):
        """Learn model for the data X with variational Bayes method.

        When `learning_method` is 'online', use mini-batch update.
        Otherwise, use batch update.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        y : Ignored

        Returns
        -------
        self
        """
        self._check_params()
        X = self._check_non_neg_array(X, "LatentDirichletAllocation.fit")
        n_samples, n_features = X.shape
        max_iter = self.max_iter
        evaluate_every = self.evaluate_every
        learning_method = self.learning_method

        batch_size = self.batch_size

        # initialize parameters
        self._init_latent_vars(n_features)
        # change to perplexity later
        last_bound = None
        n_jobs = effective_n_jobs(self.n_jobs)
        with Parallel(n_jobs=n_jobs, verbose=max(0,
                      self.verbose - 1)) as parallel:
            for i in xrange(max_iter):
                if learning_method == 'online':
                    for idx_slice in gen_batches(n_samples, batch_size):
                        self._em_step(X[idx_slice, :], total_samples=n_samples,
                                      batch_update=False, parallel=parallel)
                else:
                    # batch update
                    self._em_step(X, total_samples=n_samples,
                                  batch_update=True, parallel=parallel)

                # check perplexity
                if evaluate_every > 0 and (i + 1) % evaluate_every == 0:
                    doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
                                                       random_init=False,
                                                       parallel=parallel)
                    bound = self._perplexity_precomp_distr(X, doc_topics_distr,
                                                           sub_sampling=False)
                    if self.verbose:
                        print('iteration: %d of max_iter: %d, perplexity: %.4f'
                              % (i + 1, max_iter, bound))

                    if last_bound and abs(last_bound - bound) < self.perp_tol:
                        break
                    last_bound = bound

                elif self.verbose:
                    print('iteration: %d of max_iter: %d' % (i + 1, max_iter))
                self.n_iter_ += 1

        # calculate final perplexity value on train set
        doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
                                           random_init=False,
                                           parallel=parallel)
        self.bound_ = self._perplexity_precomp_distr(X, doc_topics_distr,
                                                     sub_sampling=False)

        return self

    def _unnormalized_transform(self, X):
        """Transform data X according to fitted model.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        Returns
        -------
        doc_topic_distr : shape=(n_samples, n_components)
            Document topic distribution for X.
        """
        if not hasattr(self, 'components_'):
            raise NotFittedError("no 'components_' attribute in model."
                                 " Please fit model first.")

        # make sure feature size is the same in fitted model and in X
        X = self._check_non_neg_array(X, "LatentDirichletAllocation.transform")
        n_samples, n_features = X.shape
        if n_features != self.components_.shape[1]:
            raise ValueError(
                "The provided data has %d dimensions while "
                "the model was trained with feature size %d." %
                (n_features, self.components_.shape[1]))

        doc_topic_distr, _ = self._e_step(X, cal_sstats=False,
                                          random_init=False)

        return doc_topic_distr

    def transform(self, X):
        """Transform data X according to the fitted model.

           .. versionchanged:: 0.18
              *doc_topic_distr* is now normalized

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        Returns
        -------
        doc_topic_distr : shape=(n_samples, n_components)
            Document topic distribution for X.
        """
        doc_topic_distr = self._unnormalized_transform(X)
        doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]
        return doc_topic_distr

    def _approx_bound(self, X, doc_topic_distr, sub_sampling):
        """Estimate the variational bound.

        Estimate the variational bound over "all documents" using only the
        documents passed in as X. Since log-likelihood of each word cannot
        be computed directly, we use this bound to estimate it.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        doc_topic_distr : array, shape=(n_samples, n_components)
            Document topic distribution. In the literature, this is called
            gamma.

        sub_sampling : boolean, optional, (default=False)
            Compensate for subsampling of documents.
            It is used in calculate bound in online learning.

        Returns
        -------
        score : float

        """

        def _loglikelihood(prior, distr, dirichlet_distr, size):
            # calculate log-likelihood
            score = np.sum((prior - distr) * dirichlet_distr)
            score += np.sum(gammaln(distr) - gammaln(prior))
            score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1)))
            return score

        is_sparse_x = sp.issparse(X)
        n_samples, n_components = doc_topic_distr.shape
        n_features = self.components_.shape[1]
        score = 0

        dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)
        dirichlet_component_ = _dirichlet_expectation_2d(self.components_)
        doc_topic_prior = self.doc_topic_prior_
        topic_word_prior = self.topic_word_prior_

        if is_sparse_x:
            X_data = X.data
            X_indices = X.indices
            X_indptr = X.indptr

        # E[log p(docs | theta, beta)]
        for idx_d in xrange(0, n_samples):
            if is_sparse_x:
                ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
                cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
            else:
                ids = np.nonzero(X[idx_d, :])[0]
                cnts = X[idx_d, ids]
            temp = (dirichlet_doc_topic[idx_d, :, np.newaxis]
                    + dirichlet_component_[:, ids])
            norm_phi = logsumexp(temp, axis=0)
            score += np.dot(cnts, norm_phi)

        # compute E[log p(theta | alpha) - log q(theta | gamma)]
        score += _loglikelihood(doc_topic_prior, doc_topic_distr,
                                dirichlet_doc_topic, self._n_components)

        # Compensate for the subsampling of the population of documents
        if sub_sampling:
            doc_ratio = float(self.total_samples) / n_samples
            score *= doc_ratio

        # E[log p(beta | eta) - log q (beta | lambda)]
        score += _loglikelihood(topic_word_prior, self.components_,
                                dirichlet_component_, n_features)

        return score

    def score(self, X, y=None):
        """Calculate approximate log-likelihood as score.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        y : Ignored

        Returns
        -------
        score : float
            Use approximate bound as score.
        """
        X = self._check_non_neg_array(X, "LatentDirichletAllocation.score")

        doc_topic_distr = self._unnormalized_transform(X)
        score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)
        return score

    def _perplexity_precomp_distr(self, X, doc_topic_distr=None,
                                  sub_sampling=False):
        """Calculate approximate perplexity for data X with ability to accept
        precomputed doc_topic_distr

        Perplexity is defined as exp(-1. * log-likelihood per word)

        Parameters
        ----------
        X : array-like or sparse matrix, [n_samples, n_features]
            Document word matrix.

        doc_topic_distr : None or array, shape=(n_samples, n_components)
            Document topic distribution.
            If it is None, it will be generated by applying transform on X.

        Returns
        -------
        score : float
            Perplexity score.
        """
        if not hasattr(self, 'components_'):
            raise NotFittedError("no 'components_' attribute in model."
                                 " Please fit model first.")

        X = self._check_non_neg_array(X,
                                      "LatentDirichletAllocation.perplexity")

        if doc_topic_distr is None:
            doc_topic_distr = self._unnormalized_transform(X)
        else:
            n_samples, n_components = doc_topic_distr.shape
            if n_samples != X.shape[0]:
                raise ValueError("Number of samples in X and doc_topic_distr"
                                 " do not match.")

            if n_components != self._n_components:
                raise ValueError("Number of topics does not match.")

        current_samples = X.shape[0]
        bound = self._approx_bound(X, doc_topic_distr, sub_sampling)

        if sub_sampling:
            word_cnt = X.sum() * (float(self.total_samples) / current_samples)
        else:
            word_cnt = X.sum()
        perword_bound = bound / word_cnt

        return np.exp(-1.0 * perword_bound)

    def perplexity(self, X, doc_topic_distr='deprecated', sub_sampling=False):
        """Calculate approximate perplexity for data X.

        Perplexity is defined as exp(-1. * log-likelihood per word)

        .. versionchanged:: 0.19
           *doc_topic_distr* argument has been deprecated and is ignored
           because user no longer has access to unnormalized distribution

        Parameters
        ----------
        X : array-like or sparse matrix, [n_samples, n_features]
            Document word matrix.

        doc_topic_distr : None or array, shape=(n_samples, n_components)
            Document topic distribution.
            This argument is deprecated and is currently being ignored.

            .. deprecated:: 0.19

        sub_sampling : bool
            Do sub-sampling or not.

        Returns
        -------
        score : float
            Perplexity score.
        """
        if doc_topic_distr != 'deprecated':
            warnings.warn("Argument 'doc_topic_distr' is deprecated and is "
                          "being ignored as of 0.19. Support for this "
                          "argument will be removed in 0.21.",
                          DeprecationWarning)

        return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)