1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
"""Matrix factorization with Sparse PCA"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause
import warnings
import numpy as np
from ..utils import check_random_state, check_array
from ..utils.validation import check_is_fitted
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from .dict_learning import dict_learning, dict_learning_online
class SparsePCA(BaseEstimator, TransformerMixin):
"""Sparse Principal Components Analysis (SparsePCA)
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Read more in the :ref:`User Guide <SparsePCA>`.
Parameters
----------
n_components : int,
Number of sparse atoms to extract.
alpha : float,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
max_iter : int,
Maximum number of iterations to perform.
tol : float,
Tolerance for the stopping condition.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
n_jobs : int or None, optional (default=None)
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
U_init : array of shape (n_samples, n_components),
Initial values for the loadings for warm restart scenarios.
V_init : array of shape (n_components, n_features),
Initial values for the components for warm restart scenarios.
verbose : int
Controls the verbosity; the higher, the more messages. Defaults to 0.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
normalize_components : boolean, optional (default=False)
- if False, use a version of Sparse PCA without components
normalization and without data centering. This is likely a bug and
even though it's the default for backward compatibility,
this should not be used.
- if True, use a version of Sparse PCA with components normalization
and data centering.
.. versionadded:: 0.20
.. deprecated:: 0.22
``normalize_components`` was added and set to ``False`` for
backward compatibility. It would be set to ``True`` from 0.22
onwards.
Attributes
----------
components_ : array, [n_components, n_features]
Sparse components extracted from the data.
error_ : array
Vector of errors at each iteration.
n_iter_ : int
Number of iterations run.
mean_ : array, shape (n_features,)
Per-feature empirical mean, estimated from the training set.
Equal to ``X.mean(axis=0)``.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.decomposition import SparsePCA
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
>>> transformer = SparsePCA(n_components=5,
... normalize_components=True,
... random_state=0)
>>> transformer.fit(X) # doctest: +ELLIPSIS
SparsePCA(...)
>>> X_transformed = transformer.transform(X)
>>> X_transformed.shape
(200, 5)
>>> # most values in the components_ are zero (sparsity)
>>> np.mean(transformer.components_ == 0) # doctest: +ELLIPSIS
0.9666...
See also
--------
PCA
MiniBatchSparsePCA
DictionaryLearning
"""
def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-8, method='lars', n_jobs=None,
U_init=None, V_init=None, verbose=False, random_state=None,
normalize_components=False):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.max_iter = max_iter
self.tol = tol
self.method = method
self.n_jobs = n_jobs
self.U_init = U_init
self.V_init = V_init
self.verbose = verbose
self.random_state = random_state
self.normalize_components = normalize_components
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = check_array(X)
if self.normalize_components:
self.mean_ = X.mean(axis=0)
X = X - self.mean_
else:
warnings.warn("normalize_components=False is a "
"backward-compatible setting that implements a "
"non-standard definition of sparse PCA. This "
"compatibility mode will be removed in 0.22.",
DeprecationWarning)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
code_init = self.V_init.T if self.V_init is not None else None
dict_init = self.U_init.T if self.U_init is not None else None
Vt, _, E, self.n_iter_ = dict_learning(X.T, n_components, self.alpha,
tol=self.tol,
max_iter=self.max_iter,
method=self.method,
n_jobs=self.n_jobs,
verbose=self.verbose,
random_state=random_state,
code_init=code_init,
dict_init=dict_init,
return_n_iter=True
)
self.components_ = Vt.T
if self.normalize_components:
components_norm = \
np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
components_norm[components_norm == 0] = 1
self.components_ /= components_norm
self.error_ = E
return self
def transform(self, X, ridge_alpha='deprecated'):
"""Least Squares projection of the data onto the sparse components.
To avoid instability issues in case the system is under-determined,
regularization can be applied (Ridge regression) via the
`ridge_alpha` parameter.
Note that Sparse PCA components orthogonality is not enforced as in PCA
hence one cannot use a simple linear projection.
Parameters
----------
X : array of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
ridge_alpha : float, default: 0.01
Amount of ridge shrinkage to apply in order to improve
conditioning.
.. deprecated:: 0.19
This parameter will be removed in 0.21.
Specify ``ridge_alpha`` in the ``SparsePCA`` constructor.
Returns
-------
X_new array, shape (n_samples, n_components)
Transformed data.
"""
check_is_fitted(self, 'components_')
X = check_array(X)
if ridge_alpha != 'deprecated':
warnings.warn("The ridge_alpha parameter on transform() is "
"deprecated since 0.19 and will be removed in 0.21. "
"Specify ridge_alpha in the SparsePCA constructor.",
DeprecationWarning)
if ridge_alpha is None:
ridge_alpha = self.ridge_alpha
else:
ridge_alpha = self.ridge_alpha
if self.normalize_components:
X = X - self.mean_
U = ridge_regression(self.components_.T, X.T, ridge_alpha,
solver='cholesky')
if not self.normalize_components:
s = np.sqrt((U ** 2).sum(axis=0))
s[s == 0] = 1
U /= s
return U
class MiniBatchSparsePCA(SparsePCA):
"""Mini-batch Sparse Principal Components Analysis
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Read more in the :ref:`User Guide <SparsePCA>`.
Parameters
----------
n_components : int,
number of sparse atoms to extract
alpha : int,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
n_iter : int,
number of iterations to perform for each mini batch
callback : callable or None, optional (default: None)
callable that gets invoked every five iterations
batch_size : int,
the number of features to take in each mini batch
verbose : int
Controls the verbosity; the higher, the more messages. Defaults to 0.
shuffle : boolean,
whether to shuffle the data before splitting it in batches
n_jobs : int or None, optional (default=None)
Number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
normalize_components : boolean, optional (default=False)
- if False, use a version of Sparse PCA without components
normalization and without data centering. This is likely a bug and
even though it's the default for backward compatibility,
this should not be used.
- if True, use a version of Sparse PCA with components normalization
and data centering.
.. versionadded:: 0.20
.. deprecated:: 0.22
``normalize_components`` was added and set to ``False`` for
backward compatibility. It would be set to ``True`` from 0.22
onwards.
Attributes
----------
components_ : array, [n_components, n_features]
Sparse components extracted from the data.
n_iter_ : int
Number of iterations run.
mean_ : array, shape (n_features,)
Per-feature empirical mean, estimated from the training set.
Equal to ``X.mean(axis=0)``.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.decomposition import MiniBatchSparsePCA
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
>>> transformer = MiniBatchSparsePCA(n_components=5,
... batch_size=50,
... normalize_components=True,
... random_state=0)
>>> transformer.fit(X) # doctest: +ELLIPSIS
MiniBatchSparsePCA(...)
>>> X_transformed = transformer.transform(X)
>>> X_transformed.shape
(200, 5)
>>> # most values in the components_ are zero (sparsity)
>>> np.mean(transformer.components_ == 0)
0.94
See also
--------
PCA
SparsePCA
DictionaryLearning
"""
def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
n_iter=100, callback=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=None, method='lars', random_state=None,
normalize_components=False):
super(MiniBatchSparsePCA, self).__init__(
n_components=n_components, alpha=alpha, verbose=verbose,
ridge_alpha=ridge_alpha, n_jobs=n_jobs, method=method,
random_state=random_state,
normalize_components=normalize_components)
self.n_iter = n_iter
self.callback = callback
self.batch_size = batch_size
self.shuffle = shuffle
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = check_array(X)
if self.normalize_components:
self.mean_ = X.mean(axis=0)
X = X - self.mean_
else:
warnings.warn("normalize_components=False is a "
"backward-compatible setting that implements a "
"non-standard definition of sparse PCA. This "
"compatibility mode will be removed in 0.22.",
DeprecationWarning)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
Vt, _, self.n_iter_ = dict_learning_online(
X.T, n_components, alpha=self.alpha,
n_iter=self.n_iter, return_code=True,
dict_init=None, verbose=self.verbose,
callback=self.callback,
batch_size=self.batch_size,
shuffle=self.shuffle,
n_jobs=self.n_jobs, method=self.method,
random_state=random_state,
return_n_iter=True)
self.components_ = Vt.T
if self.normalize_components:
components_norm = \
np.linalg.norm(self.components_, axis=1)[:, np.newaxis]
components_norm[components_norm == 0] = 1
self.components_ /= components_norm
return self
|