File: test_dict_learning.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (401 lines) | stat: -rw-r--r-- 14,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from __future__ import division
import pytest

import numpy as np
import itertools

from sklearn.exceptions import ConvergenceWarning

from sklearn.utils import check_array

from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import TempMemmap

from sklearn.decomposition import DictionaryLearning
from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.decomposition import SparseCoder
from sklearn.decomposition import dict_learning_online
from sklearn.decomposition import sparse_encode


rng_global = np.random.RandomState(0)
n_samples, n_features = 10, 8
X = rng_global.randn(n_samples, n_features)


def test_sparse_encode_shapes_omp():
    rng = np.random.RandomState(0)
    algorithms = ['omp', 'lasso_lars', 'lasso_cd', 'lars', 'threshold']
    for n_components, n_samples in itertools.product([1, 5], [1, 9]):
        X_ = rng.randn(n_samples, n_features)
        dictionary = rng.randn(n_components, n_features)
        for algorithm, n_jobs in itertools.product(algorithms, [1, 3]):
            code = sparse_encode(X_, dictionary, algorithm=algorithm,
                                 n_jobs=n_jobs)
            assert_equal(code.shape, (n_samples, n_components))


def test_dict_learning_shapes():
    n_components = 5
    dico = DictionaryLearning(n_components, random_state=0).fit(X)
    assert_equal(dico.components_.shape, (n_components, n_features))

    n_components = 1
    dico = DictionaryLearning(n_components, random_state=0).fit(X)
    assert_equal(dico.components_.shape, (n_components, n_features))
    assert_equal(dico.transform(X).shape, (X.shape[0], n_components))


def test_dict_learning_overcomplete():
    n_components = 12
    dico = DictionaryLearning(n_components, random_state=0).fit(X)
    assert dico.components_.shape == (n_components, n_features)


# positive lars deprecated 0.22
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
@pytest.mark.parametrize("transform_algorithm", [
    "lasso_lars",
    "lasso_cd",
    "lars",
    "threshold",
])
@pytest.mark.parametrize("positive_code", [
    False,
    True,
])
@pytest.mark.parametrize("positive_dict", [
    False,
    True,
])
def test_dict_learning_positivity(transform_algorithm,
                                  positive_code,
                                  positive_dict):
    n_components = 5
    dico = DictionaryLearning(
        n_components, transform_algorithm=transform_algorithm, random_state=0,
        positive_code=positive_code, positive_dict=positive_dict).fit(X)
    code = dico.transform(X)
    if positive_dict:
        assert (dico.components_ >= 0).all()
    else:
        assert (dico.components_ < 0).any()
    if positive_code:
        assert (code >= 0).all()
    else:
        assert (code < 0).any()


def test_dict_learning_reconstruction():
    n_components = 12
    dico = DictionaryLearning(n_components, transform_algorithm='omp',
                              transform_alpha=0.001, random_state=0)
    code = dico.fit(X).transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X)

    dico.set_params(transform_algorithm='lasso_lars')
    code = dico.transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)

    # used to test lars here too, but there's no guarantee the number of
    # nonzero atoms is right.


def test_dict_learning_reconstruction_parallel():
    # regression test that parallel reconstruction works with n_jobs=-1
    n_components = 12
    dico = DictionaryLearning(n_components, transform_algorithm='omp',
                              transform_alpha=0.001, random_state=0, n_jobs=-1)
    code = dico.fit(X).transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X)

    dico.set_params(transform_algorithm='lasso_lars')
    code = dico.transform(X)
    assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)


def test_dict_learning_lassocd_readonly_data():
    n_components = 12
    with TempMemmap(X) as X_read_only:
        dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd',
                                  transform_alpha=0.001, random_state=0,
                                  n_jobs=-1)
        with ignore_warnings(category=ConvergenceWarning):
            code = dico.fit(X_read_only).transform(X_read_only)
        assert_array_almost_equal(np.dot(code, dico.components_), X_read_only,
                                  decimal=2)


def test_dict_learning_nonzero_coefs():
    n_components = 4
    dico = DictionaryLearning(n_components, transform_algorithm='lars',
                              transform_n_nonzero_coefs=3, random_state=0)
    code = dico.fit(X).transform(X[np.newaxis, 1])
    assert len(np.flatnonzero(code)) == 3

    dico.set_params(transform_algorithm='omp')
    code = dico.transform(X[np.newaxis, 1])
    assert_equal(len(np.flatnonzero(code)), 3)


def test_dict_learning_unknown_fit_algorithm():
    n_components = 5
    dico = DictionaryLearning(n_components, fit_algorithm='<unknown>')
    assert_raises(ValueError, dico.fit, X)


def test_dict_learning_split():
    n_components = 5
    dico = DictionaryLearning(n_components, transform_algorithm='threshold',
                              random_state=0)
    code = dico.fit(X).transform(X)
    dico.split_sign = True
    split_code = dico.transform(X)

    assert_array_almost_equal(split_code[:, :n_components] -
                              split_code[:, n_components:], code)


def test_dict_learning_online_shapes():
    rng = np.random.RandomState(0)
    n_components = 8
    code, dictionary = dict_learning_online(X, n_components=n_components,
                                            alpha=1, random_state=rng)
    assert_equal(code.shape, (n_samples, n_components))
    assert_equal(dictionary.shape, (n_components, n_features))
    assert_equal(np.dot(code, dictionary).shape, X.shape)


# positive lars deprecated 0.22
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
@pytest.mark.parametrize("transform_algorithm", [
    "lasso_lars",
    "lasso_cd",
    "lars",
    "threshold",
])
@pytest.mark.parametrize("positive_code", [
    False,
    True,
])
@pytest.mark.parametrize("positive_dict", [
    False,
    True,
])
def test_dict_learning_online_positivity(transform_algorithm,
                                         positive_code,
                                         positive_dict):
    rng = np.random.RandomState(0)
    n_components = 8

    dico = MiniBatchDictionaryLearning(
        n_components, transform_algorithm=transform_algorithm, random_state=0,
        positive_code=positive_code, positive_dict=positive_dict).fit(X)
    code = dico.transform(X)
    if positive_dict:
        assert (dico.components_ >= 0).all()
    else:
        assert (dico.components_ < 0).any()
    if positive_code:
        assert (code >= 0).all()
    else:
        assert (code < 0).any()

    code, dictionary = dict_learning_online(X, n_components=n_components,
                                            alpha=1, random_state=rng,
                                            positive_dict=positive_dict,
                                            positive_code=positive_code)
    if positive_dict:
        assert (dictionary >= 0).all()
    else:
        assert (dictionary < 0).any()
    if positive_code:
        assert (code >= 0).all()
    else:
        assert (code < 0).any()


def test_dict_learning_online_verbosity():
    n_components = 5
    # test verbosity
    from sklearn.externals.six.moves import cStringIO as StringIO
    import sys

    old_stdout = sys.stdout
    try:
        sys.stdout = StringIO()
        dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1,
                                           random_state=0)
        dico.fit(X)
        dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2,
                                           random_state=0)
        dico.fit(X)
        dict_learning_online(X, n_components=n_components, alpha=1, verbose=1,
                             random_state=0)
        dict_learning_online(X, n_components=n_components, alpha=1, verbose=2,
                             random_state=0)
    finally:
        sys.stdout = old_stdout

    assert dico.components_.shape == (n_components, n_features)


def test_dict_learning_online_estimator_shapes():
    n_components = 5
    dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0)
    dico.fit(X)
    assert dico.components_.shape == (n_components, n_features)


def test_dict_learning_online_overcomplete():
    n_components = 12
    dico = MiniBatchDictionaryLearning(n_components, n_iter=20,
                                       random_state=0).fit(X)
    assert dico.components_.shape == (n_components, n_features)


def test_dict_learning_online_initialization():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)
    dico = MiniBatchDictionaryLearning(n_components, n_iter=0,
                                       dict_init=V, random_state=0).fit(X)
    assert_array_equal(dico.components_, V)


def test_dict_learning_online_readonly_initialization():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)
    V.setflags(write=False)
    MiniBatchDictionaryLearning(n_components, n_iter=1, dict_init=V,
                                random_state=0, shuffle=False).fit(X)


def test_dict_learning_online_partial_fit():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X),
                                        batch_size=1,
                                        alpha=1, shuffle=False, dict_init=V,
                                        random_state=0).fit(X)
    dict2 = MiniBatchDictionaryLearning(n_components, alpha=1,
                                        n_iter=1, dict_init=V,
                                        random_state=0)
    for i in range(10):
        for sample in X:
            dict2.partial_fit(sample[np.newaxis, :])

    assert not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)
    assert_array_almost_equal(dict1.components_, dict2.components_,
                              decimal=2)


def test_sparse_encode_shapes():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'):
        code = sparse_encode(X, V, algorithm=algo)
        assert_equal(code.shape, (n_samples, n_components))


# positive lars deprecated 0.22
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
@pytest.mark.parametrize("positive", [
    False,
    True,
])
def test_sparse_encode_positivity(positive):
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    for algo in ('lasso_lars', 'lasso_cd', 'lars', 'threshold'):
        code = sparse_encode(X, V, algorithm=algo, positive=positive)
        if positive:
            assert (code >= 0).all()
        else:
            assert (code < 0).any()

    try:
        sparse_encode(X, V, algorithm='omp', positive=positive)
    except ValueError:
        if not positive:
            raise


def test_sparse_encode_input():
    n_components = 100
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    Xf = check_array(X, order='F')
    for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'):
        a = sparse_encode(X, V, algorithm=algo)
        b = sparse_encode(Xf, V, algorithm=algo)
        assert_array_almost_equal(a, b)


def test_sparse_encode_error():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    code = sparse_encode(X, V, alpha=0.001)
    assert not np.all(code == 0)
    assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)


def test_sparse_encode_error_default_sparsity():
    rng = np.random.RandomState(0)
    X = rng.randn(100, 64)
    D = rng.randn(2, 64)
    code = ignore_warnings(sparse_encode)(X, D, algorithm='omp',
                                          n_nonzero_coefs=None)
    assert_equal(code.shape, (100, 2))


def test_unknown_method():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>")


def test_sparse_coder_estimator():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars',
                       transform_alpha=0.001).transform(X)
    assert not np.all(code == 0)
    assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)


def test_sparse_coder_parallel_mmap():
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/5956
    # Test that SparseCoder does not error by passing reading only
    # arrays to child processes

    rng = np.random.RandomState(777)
    n_components, n_features = 40, 64
    init_dict = rng.rand(n_components, n_features)
    # Ensure that `data` is >2M. Joblib memory maps arrays
    # if they are larger than 1MB. The 4 accounts for float32
    # data type
    n_samples = int(2e6) // (4 * n_features)
    data = np.random.rand(n_samples, n_features).astype(np.float32)

    sc = SparseCoder(init_dict, transform_algorithm='omp', n_jobs=2)
    sc.fit_transform(data)