File: test_kernel_pca.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (233 lines) | stat: -rw-r--r-- 9,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import numpy as np
import scipy.sparse as sp
import pytest

from sklearn.utils.testing import (assert_array_almost_equal, assert_less,
                                   assert_equal, assert_not_equal,
                                   assert_raises, ignore_warnings)

from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles
from sklearn.linear_model import Perceptron
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.metrics.pairwise import rbf_kernel


def test_kernel_pca():
    rng = np.random.RandomState(0)
    X_fit = rng.random_sample((5, 4))
    X_pred = rng.random_sample((2, 4))

    def histogram(x, y, **kwargs):
        # Histogram kernel implemented as a callable.
        assert_equal(kwargs, {})    # no kernel_params that we didn't ask for
        return np.minimum(x, y).sum()

    for eigen_solver in ("auto", "dense", "arpack"):
        for kernel in ("linear", "rbf", "poly", histogram):
            # histogram kernel produces singular matrix inside linalg.solve
            # XXX use a least-squares approximation?
            inv = not callable(kernel)

            # transform fit data
            kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver,
                             fit_inverse_transform=inv)
            X_fit_transformed = kpca.fit_transform(X_fit)
            X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
            assert_array_almost_equal(np.abs(X_fit_transformed),
                                      np.abs(X_fit_transformed2))

            # non-regression test: previously, gamma would be 0 by default,
            # forcing all eigenvalues to 0 under the poly kernel
            assert_not_equal(X_fit_transformed.size, 0)

            # transform new data
            X_pred_transformed = kpca.transform(X_pred)
            assert_equal(X_pred_transformed.shape[1],
                         X_fit_transformed.shape[1])

            # inverse transform
            if inv:
                X_pred2 = kpca.inverse_transform(X_pred_transformed)
                assert_equal(X_pred2.shape, X_pred.shape)


def test_kernel_pca_invalid_parameters():
    assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True,
                  kernel='precomputed')


def test_kernel_pca_consistent_transform():
    # X_fit_ needs to retain the old, unmodified copy of X
    state = np.random.RandomState(0)
    X = state.rand(10, 10)
    kpca = KernelPCA(random_state=state).fit(X)
    transformed1 = kpca.transform(X)

    X_copy = X.copy()
    X[:, 0] = 666
    transformed2 = kpca.transform(X_copy)
    assert_array_almost_equal(transformed1, transformed2)


def test_kernel_pca_sparse():
    rng = np.random.RandomState(0)
    X_fit = sp.csr_matrix(rng.random_sample((5, 4)))
    X_pred = sp.csr_matrix(rng.random_sample((2, 4)))

    for eigen_solver in ("auto", "arpack"):
        for kernel in ("linear", "rbf", "poly"):
            # transform fit data
            kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver,
                             fit_inverse_transform=False)
            X_fit_transformed = kpca.fit_transform(X_fit)
            X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
            assert_array_almost_equal(np.abs(X_fit_transformed),
                                      np.abs(X_fit_transformed2))

            # transform new data
            X_pred_transformed = kpca.transform(X_pred)
            assert_equal(X_pred_transformed.shape[1],
                         X_fit_transformed.shape[1])

            # inverse transform
            # X_pred2 = kpca.inverse_transform(X_pred_transformed)
            # assert_equal(X_pred2.shape, X_pred.shape)


def test_kernel_pca_linear_kernel():
    rng = np.random.RandomState(0)
    X_fit = rng.random_sample((5, 4))
    X_pred = rng.random_sample((2, 4))

    # for a linear kernel, kernel PCA should find the same projection as PCA
    # modulo the sign (direction)
    # fit only the first four components: fifth is near zero eigenvalue, so
    # can be trimmed due to roundoff error
    assert_array_almost_equal(
        np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)),
        np.abs(PCA(4).fit(X_fit).transform(X_pred)))


def test_kernel_pca_n_components():
    rng = np.random.RandomState(0)
    X_fit = rng.random_sample((5, 4))
    X_pred = rng.random_sample((2, 4))

    for eigen_solver in ("dense", "arpack"):
        for c in [1, 2, 4]:
            kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver)
            shape = kpca.fit(X_fit).transform(X_pred).shape

            assert_equal(shape, (2, c))


def test_remove_zero_eig():
    X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]])

    # n_components=None (default) => remove_zero_eig is True
    kpca = KernelPCA()
    Xt = kpca.fit_transform(X)
    assert_equal(Xt.shape, (3, 0))

    kpca = KernelPCA(n_components=2)
    Xt = kpca.fit_transform(X)
    assert_equal(Xt.shape, (3, 2))

    kpca = KernelPCA(n_components=2, remove_zero_eig=True)
    Xt = kpca.fit_transform(X)
    assert_equal(Xt.shape, (3, 0))


def test_kernel_pca_precomputed():
    rng = np.random.RandomState(0)
    X_fit = rng.random_sample((5, 4))
    X_pred = rng.random_sample((2, 4))

    for eigen_solver in ("dense", "arpack"):
        X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\
            fit(X_fit).transform(X_pred)
        X_kpca2 = KernelPCA(
            4, eigen_solver=eigen_solver, kernel='precomputed').fit(
                np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T))

        X_kpca_train = KernelPCA(
            4, eigen_solver=eigen_solver,
            kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T))
        X_kpca_train2 = KernelPCA(
            4, eigen_solver=eigen_solver, kernel='precomputed').fit(
                np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T))

        assert_array_almost_equal(np.abs(X_kpca),
                                  np.abs(X_kpca2))

        assert_array_almost_equal(np.abs(X_kpca_train),
                                  np.abs(X_kpca_train2))


def test_kernel_pca_invalid_kernel():
    rng = np.random.RandomState(0)
    X_fit = rng.random_sample((2, 4))
    kpca = KernelPCA(kernel="tototiti")
    assert_raises(ValueError, kpca.fit, X_fit)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_gridsearch_pipeline():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model.
    X, y = make_circles(n_samples=400, factor=.3, noise=.05,
                        random_state=0)
    kpca = KernelPCA(kernel="rbf", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca),
                         ("Perceptron", Perceptron(max_iter=5))])
    param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    grid_search.fit(X, y)
    assert_equal(grid_search.best_score_, 1)


@pytest.mark.filterwarnings('ignore: The default of the `iid`')  # 0.22
# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_gridsearch_pipeline_precomputed():
    # Test if we can do a grid-search to find parameters to separate
    # circles with a perceptron model using a precomputed kernel.
    X, y = make_circles(n_samples=400, factor=.3, noise=.05,
                        random_state=0)
    kpca = KernelPCA(kernel="precomputed", n_components=2)
    pipeline = Pipeline([("kernel_pca", kpca),
                         ("Perceptron", Perceptron(max_iter=5))])
    param_grid = dict(Perceptron__max_iter=np.arange(1, 5))
    grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
    X_kernel = rbf_kernel(X, gamma=2.)
    grid_search.fit(X_kernel, y)
    assert_equal(grid_search.best_score_, 1)


# 0.23. warning about tol not having its correct default value.
@pytest.mark.filterwarnings('ignore:max_iter and tol parameters have been')
def test_nested_circles():
    # Test the linear separability of the first 2D KPCA transform
    X, y = make_circles(n_samples=400, factor=.3, noise=.05,
                        random_state=0)

    # 2D nested circles are not linearly separable
    train_score = Perceptron(max_iter=5).fit(X, y).score(X, y)
    assert_less(train_score, 0.8)

    # Project the circles data into the first 2 components of a RBF Kernel
    # PCA model.
    # Note that the gamma value is data dependent. If this test breaks
    # and the gamma value has to be updated, the Kernel PCA example will
    # have to be updated too.
    kpca = KernelPCA(kernel="rbf", n_components=2,
                     fit_inverse_transform=True, gamma=2.)
    X_kpca = kpca.fit_transform(X)

    # The data is perfectly linearly separable in that space
    train_score = Perceptron(max_iter=5).fit(X_kpca, y).score(X_kpca, y)
    assert_equal(train_score, 1.0)