File: test_nmf.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (497 lines) | stat: -rw-r--r-- 18,427 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import numpy as np
import scipy.sparse as sp
import numbers

from scipy import linalg
from sklearn.decomposition import NMF, non_negative_factorization
from sklearn.decomposition import nmf   # For testing internals
from scipy.sparse import csc_matrix

import pytest

from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_raise_message, assert_no_warnings
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.extmath import squared_norm
from sklearn.base import clone
from sklearn.exceptions import ConvergenceWarning


def test_initialize_nn_output():
    # Test that initialization does not return negative values
    rng = np.random.mtrand.RandomState(42)
    data = np.abs(rng.randn(10, 10))
    for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'):
        W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0)
        assert_false((W < 0).any() or (H < 0).any())


def test_parameter_checking():
    A = np.ones((2, 2))
    name = 'spam'
    msg = "Invalid solver parameter: got 'spam' instead of one of"
    assert_raise_message(ValueError, msg, NMF(solver=name).fit, A)
    msg = "Invalid init parameter: got 'spam' instead of one of"
    assert_raise_message(ValueError, msg, NMF(init=name).fit, A)
    msg = "Invalid beta_loss parameter: got 'spam' instead of one"
    assert_raise_message(ValueError, msg, NMF(solver='mu',
                                              beta_loss=name).fit, A)
    msg = "Invalid beta_loss parameter: solver 'cd' does not handle "
    msg += "beta_loss = 1.0"
    assert_raise_message(ValueError, msg, NMF(solver='cd',
                                              beta_loss=1.0).fit, A)

    msg = "Negative values in data passed to"
    assert_raise_message(ValueError, msg, NMF().fit, -A)
    assert_raise_message(ValueError, msg, nmf._initialize_nmf, -A,
                         2, 'nndsvd')
    clf = NMF(2, tol=0.1).fit(A)
    assert_raise_message(ValueError, msg, clf.transform, -A)


def test_initialize_close():
    # Test NNDSVD error
    # Test that _initialize_nmf error is less than the standard deviation of
    # the entries in the matrix.
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    W, H = nmf._initialize_nmf(A, 10, init='nndsvd')
    error = linalg.norm(np.dot(W, H) - A)
    sdev = linalg.norm(A - A.mean())
    assert error <= sdev


def test_initialize_variants():
    # Test NNDSVD variants correctness
    # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic
    # 'nndsvd' only where the basic version has zeros.
    rng = np.random.mtrand.RandomState(42)
    data = np.abs(rng.randn(10, 10))
    W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd')
    Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda')
    War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar',
                                   random_state=0)

    for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)):
        assert_almost_equal(evl[ref != 0], ref[ref != 0])


# ignore UserWarning raised when both solver='mu' and init='nndsvd'
@ignore_warnings(category=UserWarning)
def test_nmf_fit_nn_output():
    # Test that the decomposition does not contain negative values
    A = np.c_[5. - np.arange(1, 6),
              5. + np.arange(1, 6)]
    for solver in ('cd', 'mu'):
        for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'):
            model = NMF(n_components=2, solver=solver, init=init,
                        random_state=0)
            transf = model.fit_transform(A)
            assert_false((model.components_ < 0).any() or
                         (transf < 0).any())


@pytest.mark.parametrize('solver', ('cd', 'mu'))
def test_nmf_fit_close(solver):
    rng = np.random.mtrand.RandomState(42)
    # Test that the fit is not too far away
    pnmf = NMF(5, solver=solver, init='nndsvdar', random_state=0,
               max_iter=600)
    X = np.abs(rng.randn(6, 5))
    assert_less(pnmf.fit(X).reconstruction_err_, 0.1)


@pytest.mark.parametrize('solver', ('cd', 'mu'))
def test_nmf_transform(solver):
    # Test that NMF.transform returns close values
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(6, 5))
    m = NMF(solver=solver, n_components=3, init='random',
            random_state=0, tol=1e-5)
    ft = m.fit_transform(A)
    t = m.transform(A)
    assert_array_almost_equal(ft, t, decimal=2)


def test_nmf_transform_custom_init():
    # Smoke test that checks if NMF.transform works with custom initialization
    random_state = np.random.RandomState(0)
    A = np.abs(random_state.randn(6, 5))
    n_components = 4
    avg = np.sqrt(A.mean() / n_components)
    H_init = np.abs(avg * random_state.randn(n_components, 5))
    W_init = np.abs(avg * random_state.randn(6, n_components))

    m = NMF(solver='cd', n_components=n_components, init='custom',
            random_state=0)
    m.fit_transform(A, W=W_init, H=H_init)
    m.transform(A)


@pytest.mark.parametrize('solver', ('cd', 'mu'))
def test_nmf_inverse_transform(solver):
    # Test that NMF.inverse_transform returns close values
    random_state = np.random.RandomState(0)
    A = np.abs(random_state.randn(6, 4))
    m = NMF(solver=solver, n_components=4, init='random', random_state=0,
            max_iter=1000)
    ft = m.fit_transform(A)
    A_new = m.inverse_transform(ft)
    assert_array_almost_equal(A, A_new, decimal=2)


def test_n_components_greater_n_features():
    # Smoke test for the case of more components than features.
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(30, 10))
    NMF(n_components=15, random_state=0, tol=1e-2).fit(A)


def test_nmf_sparse_input():
    # Test that sparse matrices are accepted as input
    from scipy.sparse import csc_matrix

    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    A[:, 2 * np.arange(5)] = 0
    A_sparse = csc_matrix(A)

    for solver in ('cd', 'mu'):
        est1 = NMF(solver=solver, n_components=5, init='random',
                   random_state=0, tol=1e-2)
        est2 = clone(est1)

    W1 = est1.fit_transform(A)
    W2 = est2.fit_transform(A_sparse)
    H1 = est1.components_
    H2 = est2.components_

    assert_array_almost_equal(W1, W2)
    assert_array_almost_equal(H1, H2)


def test_nmf_sparse_transform():
    # Test that transform works on sparse data.  Issue #2124
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(3, 2))
    A[1, 1] = 0
    A = csc_matrix(A)

    for solver in ('cd', 'mu'):
        model = NMF(solver=solver, random_state=0, n_components=2,
                    max_iter=400)
        A_fit_tr = model.fit_transform(A)
        A_tr = model.transform(A)
        assert_array_almost_equal(A_fit_tr, A_tr, decimal=1)


def test_non_negative_factorization_consistency():
    # Test that the function is called in the same way, either directly
    # or through the NMF class
    rng = np.random.mtrand.RandomState(42)
    A = np.abs(rng.randn(10, 10))
    A[:, 2 * np.arange(5)] = 0

    for solver in ('cd', 'mu'):
        W_nmf, H, _ = non_negative_factorization(
            A, solver=solver, random_state=1, tol=1e-2)
        W_nmf_2, _, _ = non_negative_factorization(
            A, H=H, update_H=False, solver=solver, random_state=1, tol=1e-2)

        model_class = NMF(solver=solver, random_state=1, tol=1e-2)
        W_cls = model_class.fit_transform(A)
        W_cls_2 = model_class.transform(A)
        assert_array_almost_equal(W_nmf, W_cls, decimal=10)
        assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10)


def test_non_negative_factorization_checking():
    A = np.ones((2, 2))
    # Test parameters checking is public function
    nnmf = non_negative_factorization
    assert_no_warnings(nnmf, A, A, A, np.int64(1))
    msg = ("Number of components must be a positive integer; "
           "got (n_components=1.5)")
    assert_raise_message(ValueError, msg, nnmf, A, A, A, 1.5)
    msg = ("Number of components must be a positive integer; "
           "got (n_components='2')")
    assert_raise_message(ValueError, msg, nnmf, A, A, A, '2')
    msg = "Negative values in data passed to NMF (input H)"
    assert_raise_message(ValueError, msg, nnmf, A, A, -A, 2, 'custom')
    msg = "Negative values in data passed to NMF (input W)"
    assert_raise_message(ValueError, msg, nnmf, A, -A, A, 2, 'custom')
    msg = "Array passed to NMF (input H) is full of zeros"
    assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom')
    msg = "Invalid regularization parameter: got 'spam' instead of one of"
    assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom', True,
                         'cd', 2., 1e-4, 200, 0., 0., 'spam')


def _beta_divergence_dense(X, W, H, beta):
    """Compute the beta-divergence of X and W.H for dense array only.

    Used as a reference for testing nmf._beta_divergence.
    """
    if isinstance(X, numbers.Number):
        W = np.array([[W]])
        H = np.array([[H]])
        X = np.array([[X]])

    WH = np.dot(W, H)

    if beta == 2:
        return squared_norm(X - WH) / 2

    WH_Xnonzero = WH[X != 0]
    X_nonzero = X[X != 0]
    np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero)

    if beta == 1:
        res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero))
        res += WH.sum() - X.sum()

    elif beta == 0:
        div = X_nonzero / WH_Xnonzero
        res = np.sum(div) - X.size - np.sum(np.log(div))
    else:
        res = (X_nonzero ** beta).sum()
        res += (beta - 1) * (WH ** beta).sum()
        res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum()
        res /= beta * (beta - 1)

    return res


def test_beta_divergence():
    # Compare _beta_divergence with the reference _beta_divergence_dense
    n_samples = 20
    n_features = 10
    n_components = 5
    beta_losses = [0., 0.5, 1., 1.5, 2.]

    # initialization
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = sp.csr_matrix(X)
    W, H = nmf._initialize_nmf(X, n_components, init='random', random_state=42)

    for beta in beta_losses:
        ref = _beta_divergence_dense(X, W, H, beta)
        loss = nmf._beta_divergence(X, W, H, beta)
        loss_csr = nmf._beta_divergence(X_csr, W, H, beta)

        assert_almost_equal(ref, loss, decimal=7)
        assert_almost_equal(ref, loss_csr, decimal=7)


def test_special_sparse_dot():
    # Test the function that computes np.dot(W, H), only where X is non zero.
    n_samples = 10
    n_features = 5
    n_components = 3
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = sp.csr_matrix(X)

    W = np.abs(rng.randn(n_samples, n_components))
    H = np.abs(rng.randn(n_components, n_features))

    WH_safe = nmf._special_sparse_dot(W, H, X_csr)
    WH = nmf._special_sparse_dot(W, H, X)

    # test that both results have same values, in X_csr nonzero elements
    ii, jj = X_csr.nonzero()
    WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel()
    assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10)

    # test that WH_safe and X_csr have the same sparse structure
    assert_array_equal(WH_safe.indices, X_csr.indices)
    assert_array_equal(WH_safe.indptr, X_csr.indptr)
    assert_array_equal(WH_safe.shape, X_csr.shape)


@ignore_warnings(category=ConvergenceWarning)
def test_nmf_multiplicative_update_sparse():
    # Compare sparse and dense input in multiplicative update NMF
    # Also test continuity of the results with respect to beta_loss parameter
    n_samples = 20
    n_features = 10
    n_components = 5
    alpha = 0.1
    l1_ratio = 0.5
    n_iter = 20

    # initialization
    rng = np.random.mtrand.RandomState(1337)
    X = rng.randn(n_samples, n_features)
    X = np.abs(X)
    X_csr = sp.csr_matrix(X)
    W0, H0 = nmf._initialize_nmf(X, n_components, init='random',
                                 random_state=42)

    for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5):
        # Reference with dense array X
        W, H = W0.copy(), H0.copy()
        W1, H1, _ = non_negative_factorization(
            X, W, H, n_components, init='custom', update_H=True,
            solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
            l1_ratio=l1_ratio, regularization='both', random_state=42)

        # Compare with sparse X
        W, H = W0.copy(), H0.copy()
        W2, H2, _ = non_negative_factorization(
            X_csr, W, H, n_components, init='custom', update_H=True,
            solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
            l1_ratio=l1_ratio, regularization='both', random_state=42)

        assert_array_almost_equal(W1, W2, decimal=7)
        assert_array_almost_equal(H1, H2, decimal=7)

        # Compare with almost same beta_loss, since some values have a specific
        # behavior, but the results should be continuous w.r.t beta_loss
        beta_loss -= 1.e-5
        W, H = W0.copy(), H0.copy()
        W3, H3, _ = non_negative_factorization(
            X_csr, W, H, n_components, init='custom', update_H=True,
            solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
            l1_ratio=l1_ratio, regularization='both', random_state=42)

        assert_array_almost_equal(W1, W3, decimal=4)
        assert_array_almost_equal(H1, H3, decimal=4)


def test_nmf_negative_beta_loss():
    # Test that an error is raised if beta_loss < 0 and X contains zeros.
    # Test that the output has not NaN values when the input contains zeros.
    n_samples = 6
    n_features = 5
    n_components = 3

    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.clip(X, 0, None, out=X)
    X_csr = sp.csr_matrix(X)

    def _assert_nmf_no_nan(X, beta_loss):
        W, H, _ = non_negative_factorization(
            X, n_components=n_components, solver='mu', beta_loss=beta_loss,
            random_state=0, max_iter=1000)
        assert_false(np.any(np.isnan(W)))
        assert_false(np.any(np.isnan(H)))

    msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
    for beta_loss in (-0.6, 0.):
        assert_raise_message(ValueError, msg, _assert_nmf_no_nan, X, beta_loss)
        _assert_nmf_no_nan(X + 1e-9, beta_loss)

    for beta_loss in (0.2, 1., 1.2, 2., 2.5):
        _assert_nmf_no_nan(X, beta_loss)
        _assert_nmf_no_nan(X_csr, beta_loss)


def test_nmf_regularization():
    # Test the effect of L1 and L2 regularizations
    n_samples = 6
    n_features = 5
    n_components = 3
    rng = np.random.mtrand.RandomState(42)
    X = np.abs(rng.randn(n_samples, n_features))

    # L1 regularization should increase the number of zeros
    l1_ratio = 1.
    for solver in ['cd', 'mu']:
        regul = nmf.NMF(n_components=n_components, solver=solver,
                        alpha=0.5, l1_ratio=l1_ratio, random_state=42)
        model = nmf.NMF(n_components=n_components, solver=solver,
                        alpha=0., l1_ratio=l1_ratio, random_state=42)

        W_regul = regul.fit_transform(X)
        W_model = model.fit_transform(X)

        H_regul = regul.components_
        H_model = model.components_

        W_regul_n_zeros = W_regul[W_regul == 0].size
        W_model_n_zeros = W_model[W_model == 0].size
        H_regul_n_zeros = H_regul[H_regul == 0].size
        H_model_n_zeros = H_model[H_model == 0].size

        assert_greater(W_regul_n_zeros, W_model_n_zeros)
        assert_greater(H_regul_n_zeros, H_model_n_zeros)

    # L2 regularization should decrease the mean of the coefficients
    l1_ratio = 0.
    for solver in ['cd', 'mu']:
        regul = nmf.NMF(n_components=n_components, solver=solver,
                        alpha=0.5, l1_ratio=l1_ratio, random_state=42)
        model = nmf.NMF(n_components=n_components, solver=solver,
                        alpha=0., l1_ratio=l1_ratio, random_state=42)

        W_regul = regul.fit_transform(X)
        W_model = model.fit_transform(X)

        H_regul = regul.components_
        H_model = model.components_

        assert_greater(W_model.mean(), W_regul.mean())
        assert_greater(H_model.mean(), H_regul.mean())


@ignore_warnings(category=ConvergenceWarning)
def test_nmf_decreasing():
    # test that the objective function is decreasing at each iteration
    n_samples = 20
    n_features = 15
    n_components = 10
    alpha = 0.1
    l1_ratio = 0.5
    tol = 0.

    # initialization
    rng = np.random.mtrand.RandomState(42)
    X = rng.randn(n_samples, n_features)
    np.abs(X, X)
    W0, H0 = nmf._initialize_nmf(X, n_components, init='random',
                                 random_state=42)

    for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5):
        for solver in ('cd', 'mu'):
            if solver != 'mu' and beta_loss != 2:
                # not implemented
                continue
            W, H = W0.copy(), H0.copy()
            previous_loss = None
            for _ in range(30):
                # one more iteration starting from the previous results
                W, H, _ = non_negative_factorization(
                    X, W, H, beta_loss=beta_loss, init='custom',
                    n_components=n_components, max_iter=1, alpha=alpha,
                    solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0,
                    regularization='both', random_state=0, update_H=True)

                loss = nmf._beta_divergence(X, W, H, beta_loss)
                if previous_loss is not None:
                    assert_greater(previous_loss, loss)
                previous_loss = loss


def test_nmf_underflow():
    # Regression test for an underflow issue in _beta_divergence
    rng = np.random.RandomState(0)
    n_samples, n_features, n_components = 10, 2, 2
    X = np.abs(rng.randn(n_samples, n_features)) * 10
    W = np.abs(rng.randn(n_samples, n_components)) * 10
    H = np.abs(rng.randn(n_components, n_features))

    X[0, 0] = 0
    ref = nmf._beta_divergence(X, W, H, beta=1.0)
    X[0, 0] = 1e-323
    res = nmf._beta_divergence(X, W, H, beta=1.0)
    assert_almost_equal(res, ref)