File: test_online_lda.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (422 lines) | stat: -rw-r--r-- 16,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import sys

import numpy as np
from scipy.linalg import block_diag
from scipy.sparse import csr_matrix
from scipy.special import psi

import pytest

from sklearn.decomposition import LatentDirichletAllocation
from sklearn.decomposition._online_lda import (_dirichlet_expectation_1d,
                                               _dirichlet_expectation_2d)

from sklearn.utils.testing import assert_allclose
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import assert_raises_regexp
from sklearn.utils.testing import if_safe_multiprocessing_with_blas
from sklearn.utils.testing import assert_warns

from sklearn.exceptions import NotFittedError
from sklearn.externals.six.moves import xrange
from sklearn.externals.six import StringIO


def _build_sparse_mtx():
    # Create 3 topics and each topic has 3 distinct words.
    # (Each word only belongs to a single topic.)
    n_components = 3
    block = np.full((3, 3), n_components, dtype=np.int)
    blocks = [block] * n_components
    X = block_diag(*blocks)
    X = csr_matrix(X)
    return (n_components, X)


def test_lda_default_prior_params():
    # default prior parameter should be `1 / topics`
    # and verbose params should not affect result
    n_components, X = _build_sparse_mtx()
    prior = 1. / n_components
    lda_1 = LatentDirichletAllocation(n_components=n_components,
                                      doc_topic_prior=prior,
                                      topic_word_prior=prior, random_state=0)
    lda_2 = LatentDirichletAllocation(n_components=n_components,
                                      random_state=0)
    topic_distr_1 = lda_1.fit_transform(X)
    topic_distr_2 = lda_2.fit_transform(X)
    assert_almost_equal(topic_distr_1, topic_distr_2)


def test_lda_fit_batch():
    # Test LDA batch learning_offset (`fit` method with 'batch' learning)
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components,
                                    evaluate_every=1, learning_method='batch',
                                    random_state=rng)
    lda.fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for component in lda.components_:
        # Find top 3 words in each LDA component
        top_idx = set(component.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps


def test_lda_fit_online():
    # Test LDA online learning (`fit` method with 'online' learning)
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_offset=10., evaluate_every=1,
                                    learning_method='online', random_state=rng)
    lda.fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for component in lda.components_:
        # Find top 3 words in each LDA component
        top_idx = set(component.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps


def test_lda_partial_fit():
    # Test LDA online learning (`partial_fit` method)
    # (same as test_lda_batch)
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_offset=10., total_samples=100,
                                    random_state=rng)
    for i in xrange(3):
        lda.partial_fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps


def test_lda_dense_input():
    # Test LDA with dense input.
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_method='batch', random_state=rng)
    lda.fit(X.toarray())

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for component in lda.components_:
        # Find top 3 words in each LDA component
        top_idx = set(component.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps


def test_lda_transform():
    # Test LDA transform.
    # Transform result cannot be negative and should be normalized
    rng = np.random.RandomState(0)
    X = rng.randint(5, size=(20, 10))
    n_components = 3
    lda = LatentDirichletAllocation(n_components=n_components,
                                    random_state=rng)
    X_trans = lda.fit_transform(X)
    assert (X_trans > 0.0).any()
    assert_array_almost_equal(np.sum(X_trans, axis=1),
                              np.ones(X_trans.shape[0]))


@pytest.mark.parametrize('method', ('online', 'batch'))
def test_lda_fit_transform(method):
    # Test LDA fit_transform & transform
    # fit_transform and transform result should be the same
    rng = np.random.RandomState(0)
    X = rng.randint(10, size=(50, 20))
    lda = LatentDirichletAllocation(n_components=5, learning_method=method,
                                    random_state=rng)
    X_fit = lda.fit_transform(X)
    X_trans = lda.transform(X)
    assert_array_almost_equal(X_fit, X_trans, 4)


def test_lda_partial_fit_dim_mismatch():
    # test `n_features` mismatch in `partial_fit`
    rng = np.random.RandomState(0)
    n_components = rng.randint(3, 6)
    n_col = rng.randint(6, 10)
    X_1 = np.random.randint(4, size=(10, n_col))
    X_2 = np.random.randint(4, size=(10, n_col + 1))
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_offset=5., total_samples=20,
                                    random_state=rng)
    lda.partial_fit(X_1)
    assert_raises_regexp(ValueError, r"^The provided data has",
                         lda.partial_fit, X_2)


def test_invalid_params():
    # test `_check_params` method
    X = np.ones((5, 10))

    invalid_models = (
        ('n_components', LatentDirichletAllocation(n_components=0)),
        ('learning_method',
         LatentDirichletAllocation(learning_method='unknown')),
        ('total_samples', LatentDirichletAllocation(total_samples=0)),
        ('learning_offset', LatentDirichletAllocation(learning_offset=-1)),
    )
    for param, model in invalid_models:
        regex = r"^Invalid %r parameter" % param
        assert_raises_regexp(ValueError, regex, model.fit, X)


def test_lda_negative_input():
    # test pass dense matrix with sparse negative input.
    X = np.full((5, 10), -1.)
    lda = LatentDirichletAllocation()
    regex = r"^Negative values in data passed"
    assert_raises_regexp(ValueError, regex, lda.fit, X)


def test_lda_no_component_error():
    # test `transform` and `perplexity` before `fit`
    rng = np.random.RandomState(0)
    X = rng.randint(4, size=(20, 10))
    lda = LatentDirichletAllocation()
    regex = r"^no 'components_' attribute"
    assert_raises_regexp(NotFittedError, regex, lda.transform, X)
    assert_raises_regexp(NotFittedError, regex, lda.perplexity, X)


def test_lda_transform_mismatch():
    # test `n_features` mismatch in partial_fit and transform
    rng = np.random.RandomState(0)
    X = rng.randint(4, size=(20, 10))
    X_2 = rng.randint(4, size=(10, 8))

    n_components = rng.randint(3, 6)
    lda = LatentDirichletAllocation(n_components=n_components,
                                    random_state=rng)
    lda.partial_fit(X)
    assert_raises_regexp(ValueError, r"^The provided data has",
                         lda.partial_fit, X_2)


@if_safe_multiprocessing_with_blas
@pytest.mark.parametrize('method', ('online', 'batch'))
def test_lda_multi_jobs(method):
    n_components, X = _build_sparse_mtx()
    # Test LDA batch training with multi CPU
    rng = np.random.RandomState(0)
    lda = LatentDirichletAllocation(n_components=n_components, n_jobs=2,
                                    learning_method=method,
                                    evaluate_every=1, random_state=rng)
    lda.fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps


@if_safe_multiprocessing_with_blas
def test_lda_partial_fit_multi_jobs():
    # Test LDA online training with multi CPU
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, n_jobs=2,
                                    learning_offset=5., total_samples=30,
                                    random_state=rng)
    for i in range(2):
        lda.partial_fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps


def test_lda_preplexity_mismatch():
    # test dimension mismatch in `perplexity` method
    rng = np.random.RandomState(0)
    n_components = rng.randint(3, 6)
    n_samples = rng.randint(6, 10)
    X = np.random.randint(4, size=(n_samples, 10))
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_offset=5., total_samples=20,
                                    random_state=rng)
    lda.fit(X)
    # invalid samples
    invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_components))
    assert_raises_regexp(ValueError, r'Number of samples',
                         lda._perplexity_precomp_distr, X, invalid_n_samples)
    # invalid topic number
    invalid_n_components = rng.randint(4, size=(n_samples, n_components + 1))
    assert_raises_regexp(ValueError, r'Number of topics',
                         lda._perplexity_precomp_distr, X,
                         invalid_n_components)


@pytest.mark.parametrize('method', ('online', 'batch'))
def test_lda_perplexity(method):
    # Test LDA perplexity for batch training
    # perplexity should be lower after each iteration
    n_components, X = _build_sparse_mtx()
    lda_1 = LatentDirichletAllocation(n_components=n_components,
                                      max_iter=1, learning_method=method,
                                      total_samples=100, random_state=0)
    lda_2 = LatentDirichletAllocation(n_components=n_components,
                                      max_iter=10, learning_method=method,
                                      total_samples=100, random_state=0)
    lda_1.fit(X)
    perp_1 = lda_1.perplexity(X, sub_sampling=False)

    lda_2.fit(X)
    perp_2 = lda_2.perplexity(X, sub_sampling=False)
    assert_greater_equal(perp_1, perp_2)

    perp_1_subsampling = lda_1.perplexity(X, sub_sampling=True)
    perp_2_subsampling = lda_2.perplexity(X, sub_sampling=True)
    assert_greater_equal(perp_1_subsampling, perp_2_subsampling)


@pytest.mark.parametrize('method', ('online', 'batch'))
def test_lda_score(method):
    # Test LDA score for batch training
    # score should be higher after each iteration
    n_components, X = _build_sparse_mtx()
    lda_1 = LatentDirichletAllocation(n_components=n_components,
                                      max_iter=1, learning_method=method,
                                      total_samples=100, random_state=0)
    lda_2 = LatentDirichletAllocation(n_components=n_components,
                                      max_iter=10, learning_method=method,
                                      total_samples=100, random_state=0)
    lda_1.fit_transform(X)
    score_1 = lda_1.score(X)

    lda_2.fit_transform(X)
    score_2 = lda_2.score(X)
    assert_greater_equal(score_2, score_1)


def test_perplexity_input_format():
    # Test LDA perplexity for sparse and dense input
    # score should be the same for both dense and sparse input
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, max_iter=1,
                                    learning_method='batch',
                                    total_samples=100, random_state=0)
    lda.fit(X)
    perp_1 = lda.perplexity(X)
    perp_2 = lda.perplexity(X.toarray())
    assert_almost_equal(perp_1, perp_2)


def test_lda_score_perplexity():
    # Test the relationship between LDA score and perplexity
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, max_iter=10,
                                    random_state=0)
    lda.fit(X)
    perplexity_1 = lda.perplexity(X, sub_sampling=False)

    score = lda.score(X)
    perplexity_2 = np.exp(-1. * (score / np.sum(X.data)))
    assert_almost_equal(perplexity_1, perplexity_2)


def test_lda_fit_perplexity():
    # Test that the perplexity computed during fit is consistent with what is
    # returned by the perplexity method
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, max_iter=1,
                                    learning_method='batch', random_state=0,
                                    evaluate_every=1)
    lda.fit(X)

    # Perplexity computed at end of fit method
    perplexity1 = lda.bound_

    # Result of perplexity method on the train set
    perplexity2 = lda.perplexity(X)

    assert_almost_equal(perplexity1, perplexity2)


def test_doc_topic_distr_deprecation():
    # Test that the appropriate warning message is displayed when a user
    # attempts to pass the doc_topic_distr argument to the perplexity method
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, max_iter=1,
                                    learning_method='batch',
                                    total_samples=100, random_state=0)
    distr1 = lda.fit_transform(X)
    distr2 = None
    assert_warns(DeprecationWarning, lda.perplexity, X, distr1)
    assert_warns(DeprecationWarning, lda.perplexity, X, distr2)


def test_lda_empty_docs():
    """Test LDA on empty document (all-zero rows)."""
    Z = np.zeros((5, 4))
    for X in [Z, csr_matrix(Z)]:
        lda = LatentDirichletAllocation(max_iter=750).fit(X)
        assert_almost_equal(lda.components_.sum(axis=0),
                            np.ones(lda.components_.shape[1]))


def test_dirichlet_expectation():
    """Test Cython version of Dirichlet expectation calculation."""
    x = np.logspace(-100, 10, 10000)
    expectation = np.empty_like(x)
    _dirichlet_expectation_1d(x, 0, expectation)
    assert_allclose(expectation, np.exp(psi(x) - psi(np.sum(x))),
                    atol=1e-19)

    x = x.reshape(100, 100)
    assert_allclose(_dirichlet_expectation_2d(x),
                    psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]),
                    rtol=1e-11, atol=3e-9)


def check_verbosity(verbose, evaluate_every, expected_lines,
                    expected_perplexities):
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, max_iter=3,
                                    learning_method='batch',
                                    verbose=verbose,
                                    evaluate_every=evaluate_every,
                                    random_state=0)
    out = StringIO()
    old_out, sys.stdout = sys.stdout, out
    try:
        lda.fit(X)
    finally:
        sys.stdout = old_out

    n_lines = out.getvalue().count('\n')
    n_perplexity = out.getvalue().count('perplexity')
    assert_equal(expected_lines, n_lines)
    assert_equal(expected_perplexities, n_perplexity)


@pytest.mark.parametrize(
        'verbose,evaluate_every,expected_lines,expected_perplexities',
        [(False, 1, 0, 0),
         (False, 0, 0, 0),
         (True, 0, 3, 0),
         (True, 1, 3, 3),
         (True, 2, 3, 1)])
def test_verbosity(verbose, evaluate_every, expected_lines,
                   expected_perplexities):
    check_verbosity(verbose, evaluate_every, expected_lines,
                    expected_perplexities)


def test_lda_n_topics_deprecation():
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_topics=10, learning_method='batch')
    assert_warns(DeprecationWarning, lda.fit, X)