1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
"""Test truncated SVD transformer."""
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.decomposition import TruncatedSVD, PCA
from sklearn.utils import check_random_state
from sklearn.utils.testing import (assert_array_almost_equal, assert_equal,
assert_raises, assert_greater,
assert_array_less, assert_allclose)
# Make an X that looks somewhat like a small tf-idf matrix.
# XXX newer versions of SciPy have scipy.sparse.rand for this.
shape = 60, 55
n_samples, n_features = shape
rng = check_random_state(42)
X = rng.randint(-100, 20, np.product(shape)).reshape(shape)
X = sp.csr_matrix(np.maximum(X, 0), dtype=np.float64)
X.data[:] = 1 + np.log(X.data)
Xdense = X.A
def test_algorithms():
svd_a = TruncatedSVD(30, algorithm="arpack")
svd_r = TruncatedSVD(30, algorithm="randomized", random_state=42)
Xa = svd_a.fit_transform(X)[:, :6]
Xr = svd_r.fit_transform(X)[:, :6]
assert_array_almost_equal(Xa, Xr, decimal=5)
comp_a = np.abs(svd_a.components_)
comp_r = np.abs(svd_r.components_)
# All elements are equal, but some elements are more equal than others.
assert_array_almost_equal(comp_a[:9], comp_r[:9])
assert_array_almost_equal(comp_a[9:], comp_r[9:], decimal=2)
def test_attributes():
for n_components in (10, 25, 41):
tsvd = TruncatedSVD(n_components).fit(X)
assert_equal(tsvd.n_components, n_components)
assert_equal(tsvd.components_.shape, (n_components, n_features))
@pytest.mark.parametrize('algorithm', ("arpack", "randomized"))
def test_too_many_components(algorithm):
for n_components in (n_features, n_features + 1):
tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm)
assert_raises(ValueError, tsvd.fit, X)
@pytest.mark.parametrize('fmt', ("array", "csr", "csc", "coo", "lil"))
def test_sparse_formats(fmt):
Xfmt = Xdense if fmt == "dense" else getattr(X, "to" + fmt)()
tsvd = TruncatedSVD(n_components=11)
Xtrans = tsvd.fit_transform(Xfmt)
assert_equal(Xtrans.shape, (n_samples, 11))
Xtrans = tsvd.transform(Xfmt)
assert_equal(Xtrans.shape, (n_samples, 11))
@pytest.mark.parametrize('algo', ("arpack", "randomized"))
def test_inverse_transform(algo):
# We need a lot of components for the reconstruction to be "almost
# equal" in all positions. XXX Test means or sums instead?
tsvd = TruncatedSVD(n_components=52, random_state=42, algorithm=algo)
Xt = tsvd.fit_transform(X)
Xinv = tsvd.inverse_transform(Xt)
assert_array_almost_equal(Xinv, Xdense, decimal=1)
def test_integers():
Xint = X.astype(np.int64)
tsvd = TruncatedSVD(n_components=6)
Xtrans = tsvd.fit_transform(Xint)
assert_equal(Xtrans.shape, (n_samples, tsvd.n_components))
def test_explained_variance():
# Test sparse data
svd_a_10_sp = TruncatedSVD(10, algorithm="arpack")
svd_r_10_sp = TruncatedSVD(10, algorithm="randomized", random_state=42)
svd_a_20_sp = TruncatedSVD(20, algorithm="arpack")
svd_r_20_sp = TruncatedSVD(20, algorithm="randomized", random_state=42)
X_trans_a_10_sp = svd_a_10_sp.fit_transform(X)
X_trans_r_10_sp = svd_r_10_sp.fit_transform(X)
X_trans_a_20_sp = svd_a_20_sp.fit_transform(X)
X_trans_r_20_sp = svd_r_20_sp.fit_transform(X)
# Test dense data
svd_a_10_de = TruncatedSVD(10, algorithm="arpack")
svd_r_10_de = TruncatedSVD(10, algorithm="randomized", random_state=42)
svd_a_20_de = TruncatedSVD(20, algorithm="arpack")
svd_r_20_de = TruncatedSVD(20, algorithm="randomized", random_state=42)
X_trans_a_10_de = svd_a_10_de.fit_transform(X.toarray())
X_trans_r_10_de = svd_r_10_de.fit_transform(X.toarray())
X_trans_a_20_de = svd_a_20_de.fit_transform(X.toarray())
X_trans_r_20_de = svd_r_20_de.fit_transform(X.toarray())
# helper arrays for tests below
svds = (svd_a_10_sp, svd_r_10_sp, svd_a_20_sp, svd_r_20_sp, svd_a_10_de,
svd_r_10_de, svd_a_20_de, svd_r_20_de)
svds_trans = (
(svd_a_10_sp, X_trans_a_10_sp),
(svd_r_10_sp, X_trans_r_10_sp),
(svd_a_20_sp, X_trans_a_20_sp),
(svd_r_20_sp, X_trans_r_20_sp),
(svd_a_10_de, X_trans_a_10_de),
(svd_r_10_de, X_trans_r_10_de),
(svd_a_20_de, X_trans_a_20_de),
(svd_r_20_de, X_trans_r_20_de),
)
svds_10_v_20 = (
(svd_a_10_sp, svd_a_20_sp),
(svd_r_10_sp, svd_r_20_sp),
(svd_a_10_de, svd_a_20_de),
(svd_r_10_de, svd_r_20_de),
)
svds_sparse_v_dense = (
(svd_a_10_sp, svd_a_10_de),
(svd_a_20_sp, svd_a_20_de),
(svd_r_10_sp, svd_r_10_de),
(svd_r_20_sp, svd_r_20_de),
)
# Assert the 1st component is equal
for svd_10, svd_20 in svds_10_v_20:
assert_array_almost_equal(
svd_10.explained_variance_ratio_,
svd_20.explained_variance_ratio_[:10],
decimal=5,
)
# Assert that 20 components has higher explained variance than 10
for svd_10, svd_20 in svds_10_v_20:
assert_greater(
svd_20.explained_variance_ratio_.sum(),
svd_10.explained_variance_ratio_.sum(),
)
# Assert that all the values are greater than 0
for svd in svds:
assert_array_less(0.0, svd.explained_variance_ratio_)
# Assert that total explained variance is less than 1
for svd in svds:
assert_array_less(svd.explained_variance_ratio_.sum(), 1.0)
# Compare sparse vs. dense
for svd_sparse, svd_dense in svds_sparse_v_dense:
assert_array_almost_equal(svd_sparse.explained_variance_ratio_,
svd_dense.explained_variance_ratio_)
# Test that explained_variance is correct
for svd, transformed in svds_trans:
total_variance = np.var(X.toarray(), axis=0).sum()
variances = np.var(transformed, axis=0)
true_explained_variance_ratio = variances / total_variance
assert_array_almost_equal(
svd.explained_variance_ratio_,
true_explained_variance_ratio,
)
def test_singular_values():
# Check that the TruncatedSVD output has the correct singular values
rng = np.random.RandomState(0)
n_samples = 100
n_features = 80
X = rng.randn(n_samples, n_features)
apca = TruncatedSVD(n_components=2, algorithm='arpack',
random_state=rng).fit(X)
rpca = TruncatedSVD(n_components=2, algorithm='arpack',
random_state=rng).fit(X)
assert_array_almost_equal(apca.singular_values_, rpca.singular_values_, 12)
# Compare to the Frobenius norm
X_apca = apca.transform(X)
X_rpca = rpca.transform(X)
assert_array_almost_equal(np.sum(apca.singular_values_**2.0),
np.linalg.norm(X_apca, "fro")**2.0, 12)
assert_array_almost_equal(np.sum(rpca.singular_values_**2.0),
np.linalg.norm(X_rpca, "fro")**2.0, 12)
# Compare to the 2-norms of the score vectors
assert_array_almost_equal(apca.singular_values_,
np.sqrt(np.sum(X_apca**2.0, axis=0)), 12)
assert_array_almost_equal(rpca.singular_values_,
np.sqrt(np.sum(X_rpca**2.0, axis=0)), 12)
# Set the singular values and see what we get back
rng = np.random.RandomState(0)
n_samples = 100
n_features = 110
X = rng.randn(n_samples, n_features)
apca = TruncatedSVD(n_components=3, algorithm='arpack',
random_state=rng)
rpca = TruncatedSVD(n_components=3, algorithm='randomized',
random_state=rng)
X_apca = apca.fit_transform(X)
X_rpca = rpca.fit_transform(X)
X_apca /= np.sqrt(np.sum(X_apca**2.0, axis=0))
X_rpca /= np.sqrt(np.sum(X_rpca**2.0, axis=0))
X_apca[:, 0] *= 3.142
X_apca[:, 1] *= 2.718
X_rpca[:, 0] *= 3.142
X_rpca[:, 1] *= 2.718
X_hat_apca = np.dot(X_apca, apca.components_)
X_hat_rpca = np.dot(X_rpca, rpca.components_)
apca.fit(X_hat_apca)
rpca.fit(X_hat_rpca)
assert_array_almost_equal(apca.singular_values_, [3.142, 2.718, 1.0], 14)
assert_array_almost_equal(rpca.singular_values_, [3.142, 2.718, 1.0], 14)
def test_truncated_svd_eq_pca():
# TruncatedSVD should be equal to PCA on centered data
X_c = X - X.mean(axis=0)
params = dict(n_components=10, random_state=42)
svd = TruncatedSVD(algorithm='arpack', **params)
pca = PCA(svd_solver='arpack', **params)
Xt_svd = svd.fit_transform(X_c)
Xt_pca = pca.fit_transform(X_c)
assert_allclose(Xt_svd, Xt_pca, rtol=1e-9)
assert_allclose(pca.mean_, 0, atol=1e-9)
assert_allclose(svd.components_, pca.components_)
|