File: discriminant_analysis.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (795 lines) | stat: -rw-r--r-- 28,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
"""
Linear Discriminant Analysis and Quadratic Discriminant Analysis
"""

# Authors: Clemens Brunner
#          Martin Billinger
#          Matthieu Perrot
#          Mathieu Blondel

# License: BSD 3-Clause

from __future__ import print_function
import warnings
import numpy as np
from .utils import deprecated
from scipy import linalg
from .externals.six import string_types
from .externals.six.moves import xrange

from .base import BaseEstimator, TransformerMixin, ClassifierMixin
from .linear_model.base import LinearClassifierMixin
from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance
from .utils.multiclass import unique_labels
from .utils import check_array, check_X_y
from .utils.validation import check_is_fitted
from .utils.multiclass import check_classification_targets
from .preprocessing import StandardScaler


__all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis']


def _cov(X, shrinkage=None):
    """Estimate covariance matrix (using optional shrinkage).

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Input data.

    shrinkage : string or float, optional
        Shrinkage parameter, possible values:
          - None or 'empirical': no shrinkage (default).
          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
          - float between 0 and 1: fixed shrinkage parameter.

    Returns
    -------
    s : array, shape (n_features, n_features)
        Estimated covariance matrix.
    """
    shrinkage = "empirical" if shrinkage is None else shrinkage
    if isinstance(shrinkage, string_types):
        if shrinkage == 'auto':
            sc = StandardScaler()  # standardize features
            X = sc.fit_transform(X)
            s = ledoit_wolf(X)[0]
            # rescale
            s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
        elif shrinkage == 'empirical':
            s = empirical_covariance(X)
        else:
            raise ValueError('unknown shrinkage parameter')
    elif isinstance(shrinkage, float) or isinstance(shrinkage, int):
        if shrinkage < 0 or shrinkage > 1:
            raise ValueError('shrinkage parameter must be between 0 and 1')
        s = shrunk_covariance(empirical_covariance(X), shrinkage)
    else:
        raise TypeError('shrinkage must be of string or int type')
    return s


def _class_means(X, y):
    """Compute class means.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Input data.

    y : array-like, shape (n_samples,) or (n_samples, n_targets)
        Target values.

    Returns
    -------
    means : array-like, shape (n_classes, n_features)
        Class means.
    """
    classes, y = np.unique(y, return_inverse=True)
    cnt = np.bincount(y)
    means = np.zeros(shape=(len(classes), X.shape[1]))
    np.add.at(means, y, X)
    means /= cnt[:, None]
    return means


def _class_cov(X, y, priors, shrinkage=None):
    """Compute class covariance matrix.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Input data.

    y : array-like, shape (n_samples,) or (n_samples, n_targets)
        Target values.

    priors : array-like, shape (n_classes,)
        Class priors.

    shrinkage : string or float, optional
        Shrinkage parameter, possible values:
          - None: no shrinkage (default).
          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
          - float between 0 and 1: fixed shrinkage parameter.

    Returns
    -------
    cov : array-like, shape (n_features, n_features)
        Class covariance matrix.
    """
    classes = np.unique(y)
    cov = np.zeros(shape=(X.shape[1], X.shape[1]))
    for idx, group in enumerate(classes):
        Xg = X[y == group, :]
        cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage))
    return cov


class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin,
                                 TransformerMixin):
    """Linear Discriminant Analysis

    A classifier with a linear decision boundary, generated by fitting class
    conditional densities to the data and using Bayes' rule.

    The model fits a Gaussian density to each class, assuming that all classes
    share the same covariance matrix.

    The fitted model can also be used to reduce the dimensionality of the input
    by projecting it to the most discriminative directions.

    .. versionadded:: 0.17
       *LinearDiscriminantAnalysis*.

    Read more in the :ref:`User Guide <lda_qda>`.

    Parameters
    ----------
    solver : string, optional
        Solver to use, possible values:
          - 'svd': Singular value decomposition (default).
            Does not compute the covariance matrix, therefore this solver is
            recommended for data with a large number of features.
          - 'lsqr': Least squares solution, can be combined with shrinkage.
          - 'eigen': Eigenvalue decomposition, can be combined with shrinkage.

    shrinkage : string or float, optional
        Shrinkage parameter, possible values:
          - None: no shrinkage (default).
          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
          - float between 0 and 1: fixed shrinkage parameter.

        Note that shrinkage works only with 'lsqr' and 'eigen' solvers.

    priors : array, optional, shape (n_classes,)
        Class priors.

    n_components : int, optional
        Number of components (< n_classes - 1) for dimensionality reduction.

    store_covariance : bool, optional
        Additionally compute class covariance matrix (default False), used
        only in 'svd' solver.

        .. versionadded:: 0.17

    tol : float, optional, (default 1.0e-4)
        Threshold used for rank estimation in SVD solver.

        .. versionadded:: 0.17

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_classes, n_features)
        Weight vector(s).

    intercept_ : array, shape (n_features,)
        Intercept term.

    covariance_ : array-like, shape (n_features, n_features)
        Covariance matrix (shared by all classes).

    explained_variance_ratio_ : array, shape (n_components,)
        Percentage of variance explained by each of the selected components.
        If ``n_components`` is not set then all components are stored and the
        sum of explained variances is equal to 1.0. Only available when eigen
        or svd solver is used.

    means_ : array-like, shape (n_classes, n_features)
        Class means.

    priors_ : array-like, shape (n_classes,)
        Class priors (sum to 1).

    scalings_ : array-like, shape (rank, n_classes - 1)
        Scaling of the features in the space spanned by the class centroids.

    xbar_ : array-like, shape (n_features,)
        Overall mean.

    classes_ : array-like, shape (n_classes,)
        Unique class labels.

    See also
    --------
    sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic
        Discriminant Analysis

    Notes
    -----
    The default solver is 'svd'. It can perform both classification and
    transform, and it does not rely on the calculation of the covariance
    matrix. This can be an advantage in situations where the number of features
    is large. However, the 'svd' solver cannot be used with shrinkage.

    The 'lsqr' solver is an efficient algorithm that only works for
    classification. It supports shrinkage.

    The 'eigen' solver is based on the optimization of the between class
    scatter to within class scatter ratio. It can be used for both
    classification and transform, and it supports shrinkage. However, the
    'eigen' solver needs to compute the covariance matrix, so it might not be
    suitable for situations with a high number of features.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = LinearDiscriminantAnalysis()
    >>> clf.fit(X, y)
    LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,
                  solver='svd', store_covariance=False, tol=0.0001)
    >>> print(clf.predict([[-0.8, -1]]))
    [1]
    """

    def __init__(self, solver='svd', shrinkage=None, priors=None,
                 n_components=None, store_covariance=False, tol=1e-4):
        self.solver = solver
        self.shrinkage = shrinkage
        self.priors = priors
        self.n_components = n_components
        self.store_covariance = store_covariance  # used only in svd solver
        self.tol = tol  # used only in svd solver

    def _solve_lsqr(self, X, y, shrinkage):
        """Least squares solver.

        The least squares solver computes a straightforward solution of the
        optimal decision rule based directly on the discriminant functions. It
        can only be used for classification (with optional shrinkage), because
        estimation of eigenvectors is not performed. Therefore, dimensionality
        reduction with the transform is not supported.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,) or (n_samples, n_classes)
            Target values.

        shrinkage : string or float, optional
            Shrinkage parameter, possible values:
              - None: no shrinkage (default).
              - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
              - float between 0 and 1: fixed shrinkage parameter.

        Notes
        -----
        This solver is based on [1]_, section 2.6.2, pp. 39-41.

        References
        ----------
        .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
           (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
           0-471-05669-3.
        """
        self.means_ = _class_means(X, y)
        self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)
        self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
        self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +
                           np.log(self.priors_))

    def _solve_eigen(self, X, y, shrinkage):
        """Eigenvalue solver.

        The eigenvalue solver computes the optimal solution of the Rayleigh
        coefficient (basically the ratio of between class scatter to within
        class scatter). This solver supports both classification and
        dimensionality reduction (with optional shrinkage).

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,) or (n_samples, n_targets)
            Target values.

        shrinkage : string or float, optional
            Shrinkage parameter, possible values:
              - None: no shrinkage (default).
              - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
              - float between 0 and 1: fixed shrinkage constant.

        Notes
        -----
        This solver is based on [1]_, section 3.8.3, pp. 121-124.

        References
        ----------
        .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
           (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
           0-471-05669-3.
        """
        self.means_ = _class_means(X, y)
        self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)

        Sw = self.covariance_  # within scatter
        St = _cov(X, shrinkage)  # total scatter
        Sb = St - Sw  # between scatter

        evals, evecs = linalg.eigh(Sb, Sw)
        self.explained_variance_ratio_ = np.sort(evals / np.sum(evals)
                                                 )[::-1][:self._max_components]
        evecs = evecs[:, np.argsort(evals)[::-1]]  # sort eigenvectors
        evecs /= np.linalg.norm(evecs, axis=0)

        self.scalings_ = evecs
        self.coef_ = np.dot(self.means_, evecs).dot(evecs.T)
        self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +
                           np.log(self.priors_))

    def _solve_svd(self, X, y):
        """SVD solver.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,) or (n_samples, n_targets)
            Target values.
        """
        n_samples, n_features = X.shape
        n_classes = len(self.classes_)

        self.means_ = _class_means(X, y)
        if self.store_covariance:
            self.covariance_ = _class_cov(X, y, self.priors_)

        Xc = []
        for idx, group in enumerate(self.classes_):
            Xg = X[y == group, :]
            Xc.append(Xg - self.means_[idx])

        self.xbar_ = np.dot(self.priors_, self.means_)

        Xc = np.concatenate(Xc, axis=0)

        # 1) within (univariate) scaling by with classes std-dev
        std = Xc.std(axis=0)
        # avoid division by zero in normalization
        std[std == 0] = 1.
        fac = 1. / (n_samples - n_classes)

        # 2) Within variance scaling
        X = np.sqrt(fac) * (Xc / std)
        # SVD of centered (within)scaled data
        U, S, V = linalg.svd(X, full_matrices=False)

        rank = np.sum(S > self.tol)
        if rank < n_features:
            warnings.warn("Variables are collinear.")
        # Scaling of within covariance is: V' 1/S
        scalings = (V[:rank] / std).T / S[:rank]

        # 3) Between variance scaling
        # Scale weighted centers
        X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) *
                    (self.means_ - self.xbar_).T).T, scalings)
        # Centers are living in a space with n_classes-1 dim (maximum)
        # Use SVD to find projection in the space spanned by the
        # (n_classes) centers
        _, S, V = linalg.svd(X, full_matrices=0)

        self.explained_variance_ratio_ = (S**2 / np.sum(
            S**2))[:self._max_components]
        rank = np.sum(S > self.tol * S[0])
        self.scalings_ = np.dot(scalings, V.T[:, :rank])
        coef = np.dot(self.means_ - self.xbar_, self.scalings_)
        self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) +
                           np.log(self.priors_))
        self.coef_ = np.dot(coef, self.scalings_.T)
        self.intercept_ -= np.dot(self.xbar_, self.coef_.T)

    def fit(self, X, y):
        """Fit LinearDiscriminantAnalysis model according to the given
           training data and parameters.

           .. versionchanged:: 0.19
              *store_covariance* has been moved to main constructor.

           .. versionchanged:: 0.19
              *tol* has been moved to main constructor.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array, shape (n_samples,)
            Target values.
        """
        X, y = check_X_y(X, y, ensure_min_samples=2, estimator=self)
        self.classes_ = unique_labels(y)
        n_samples, _ = X.shape
        n_classes = len(self.classes_)

        if n_samples == n_classes:
            raise ValueError("The number of samples must be more "
                             "than the number of classes.")

        if self.priors is None:  # estimate priors from sample
            _, y_t = np.unique(y, return_inverse=True)  # non-negative ints
            self.priors_ = np.bincount(y_t) / float(len(y))
        else:
            self.priors_ = np.asarray(self.priors)

        if (self.priors_ < 0).any():
            raise ValueError("priors must be non-negative")
        if not np.isclose(self.priors_.sum(), 1.0):
            warnings.warn("The priors do not sum to 1. Renormalizing",
                          UserWarning)
            self.priors_ = self.priors_ / self.priors_.sum()

        # Get the maximum number of components
        if self.n_components is None:
            self._max_components = len(self.classes_) - 1
        else:
            self._max_components = min(len(self.classes_) - 1,
                                       self.n_components)

        if self.solver == 'svd':
            if self.shrinkage is not None:
                raise NotImplementedError('shrinkage not supported')
            self._solve_svd(X, y)
        elif self.solver == 'lsqr':
            self._solve_lsqr(X, y, shrinkage=self.shrinkage)
        elif self.solver == 'eigen':
            self._solve_eigen(X, y, shrinkage=self.shrinkage)
        else:
            raise ValueError("unknown solver {} (valid solvers are 'svd', "
                             "'lsqr', and 'eigen').".format(self.solver))
        if self.classes_.size == 2:  # treat binary case as a special case
            self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2)
            self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0],
                                       ndmin=1)
        return self

    def transform(self, X):
        """Project data to maximize class separation.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        Returns
        -------
        X_new : array, shape (n_samples, n_components)
            Transformed data.
        """
        if self.solver == 'lsqr':
            raise NotImplementedError("transform not implemented for 'lsqr' "
                                      "solver (use 'svd' or 'eigen').")
        check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any)

        X = check_array(X)
        if self.solver == 'svd':
            X_new = np.dot(X - self.xbar_, self.scalings_)
        elif self.solver == 'eigen':
            X_new = np.dot(X, self.scalings_)

        return X_new[:, :self._max_components]

    def predict_proba(self, X):
        """Estimate probability.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        Returns
        -------
        C : array, shape (n_samples, n_classes)
            Estimated probabilities.
        """
        prob = self.decision_function(X)
        prob *= -1
        np.exp(prob, prob)
        prob += 1
        np.reciprocal(prob, prob)
        if len(self.classes_) == 2:  # binary case
            return np.column_stack([1 - prob, prob])
        else:
            # OvR normalization, like LibLinear's predict_probability
            prob /= prob.sum(axis=1).reshape((prob.shape[0], -1))
            return prob

    def predict_log_proba(self, X):
        """Estimate log probability.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        Returns
        -------
        C : array, shape (n_samples, n_classes)
            Estimated log probabilities.
        """
        return np.log(self.predict_proba(X))


class QuadraticDiscriminantAnalysis(BaseEstimator, ClassifierMixin):
    """Quadratic Discriminant Analysis

    A classifier with a quadratic decision boundary, generated
    by fitting class conditional densities to the data
    and using Bayes' rule.

    The model fits a Gaussian density to each class.

    .. versionadded:: 0.17
       *QuadraticDiscriminantAnalysis*

    Read more in the :ref:`User Guide <lda_qda>`.

    Parameters
    ----------
    priors : array, optional, shape = [n_classes]
        Priors on classes

    reg_param : float, optional
        Regularizes the covariance estimate as
        ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)``

    store_covariance : boolean
        If True the covariance matrices are computed and stored in the
        `self.covariance_` attribute.

        .. versionadded:: 0.17

    tol : float, optional, default 1.0e-4
        Threshold used for rank estimation.

        .. versionadded:: 0.17

    store_covariances : boolean
        Deprecated, use `store_covariance`.

    Attributes
    ----------
    covariance_ : list of array-like, shape = [n_features, n_features]
        Covariance matrices of each class.

    means_ : array-like, shape = [n_classes, n_features]
        Class means.

    priors_ : array-like, shape = [n_classes]
        Class priors (sum to 1).

    rotations_ : list of arrays
        For each class k an array of shape [n_features, n_k], with
        ``n_k = min(n_features, number of elements in class k)``
        It is the rotation of the Gaussian distribution, i.e. its
        principal axis.

    scalings_ : list of arrays
        For each class k an array of shape [n_k]. It contains the scaling
        of the Gaussian distributions along its principal axes, i.e. the
        variance in the rotated coordinate system.

    Examples
    --------
    >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = QuadraticDiscriminantAnalysis()
    >>> clf.fit(X, y)
    ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
    QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0,
                                  store_covariance=False,
                                  store_covariances=None, tol=0.0001)
    >>> print(clf.predict([[-0.8, -1]]))
    [1]

    See also
    --------
    sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear
        Discriminant Analysis
    """

    def __init__(self, priors=None, reg_param=0., store_covariance=False,
                 tol=1.0e-4, store_covariances=None):
        self.priors = np.asarray(priors) if priors is not None else None
        self.reg_param = reg_param
        self.store_covariances = store_covariances
        self.store_covariance = store_covariance
        self.tol = tol

    @property
    @deprecated("Attribute ``covariances_`` was deprecated in version"
                " 0.19 and will be removed in 0.21. Use "
                "``covariance_`` instead")
    def covariances_(self):
        return self.covariance_

    def fit(self, X, y):
        """Fit the model according to the given training data and parameters.

            .. versionchanged:: 0.19
               ``store_covariances`` has been moved to main constructor as
               ``store_covariance``

            .. versionchanged:: 0.19
               ``tol`` has been moved to main constructor.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array, shape = [n_samples]
            Target values (integers)
        """
        X, y = check_X_y(X, y)
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        n_samples, n_features = X.shape
        n_classes = len(self.classes_)
        if n_classes < 2:
            raise ValueError('The number of classes has to be greater than'
                             ' one; got %d class' % (n_classes))
        if self.priors is None:
            self.priors_ = np.bincount(y) / float(n_samples)
        else:
            self.priors_ = self.priors

        cov = None
        store_covariance = self.store_covariance or self.store_covariances
        if self.store_covariances:
            warnings.warn("'store_covariances' was renamed to store_covariance"
                          " in version 0.19 and will be removed in 0.21.",
                          DeprecationWarning)
        if store_covariance:
            cov = []
        means = []
        scalings = []
        rotations = []
        for ind in xrange(n_classes):
            Xg = X[y == ind, :]
            meang = Xg.mean(0)
            means.append(meang)
            if len(Xg) == 1:
                raise ValueError('y has only 1 sample in class %s, covariance '
                                 'is ill defined.' % str(self.classes_[ind]))
            Xgc = Xg - meang
            # Xgc = U * S * V.T
            U, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
            rank = np.sum(S > self.tol)
            if rank < n_features:
                warnings.warn("Variables are collinear")
            S2 = (S ** 2) / (len(Xg) - 1)
            S2 = ((1 - self.reg_param) * S2) + self.reg_param
            if self.store_covariance or store_covariance:
                # cov = V * (S^2 / (n-1)) * V.T
                cov.append(np.dot(S2 * Vt.T, Vt))
            scalings.append(S2)
            rotations.append(Vt.T)
        if self.store_covariance or store_covariance:
            self.covariance_ = cov
        self.means_ = np.asarray(means)
        self.scalings_ = scalings
        self.rotations_ = rotations
        return self

    def _decision_function(self, X):
        check_is_fitted(self, 'classes_')

        X = check_array(X)
        norm2 = []
        for i in range(len(self.classes_)):
            R = self.rotations_[i]
            S = self.scalings_[i]
            Xm = X - self.means_[i]
            X2 = np.dot(Xm, R * (S ** (-0.5)))
            norm2.append(np.sum(X2 ** 2, 1))
        norm2 = np.array(norm2).T   # shape = [len(X), n_classes]
        u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
        return (-0.5 * (norm2 + u) + np.log(self.priors_))

    def decision_function(self, X):
        """Apply decision function to an array of samples.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples (test vectors).

        Returns
        -------
        C : array, shape = [n_samples, n_classes] or [n_samples,]
            Decision function values related to each class, per sample.
            In the two-class case, the shape is [n_samples,], giving the
            log likelihood ratio of the positive class.
        """
        dec_func = self._decision_function(X)
        # handle special case of two classes
        if len(self.classes_) == 2:
            return dec_func[:, 1] - dec_func[:, 0]
        return dec_func

    def predict(self, X):
        """Perform classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        C : array, shape = [n_samples]
        """
        d = self._decision_function(X)
        y_pred = self.classes_.take(d.argmax(1))
        return y_pred

    def predict_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples/test vectors.

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Posterior probabilities of classification per class.
        """
        values = self._decision_function(X)
        # compute the likelihood of the underlying gaussian models
        # up to a multiplicative constant.
        likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
        # compute posterior probabilities
        return likelihood / likelihood.sum(axis=1)[:, np.newaxis]

    def predict_log_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Array of samples/test vectors.

        Returns
        -------
        C : array, shape = [n_samples, n_classes]
            Posterior log-probabilities of classification per class.
        """
        # XXX : can do better to avoid precision overflows
        probas_ = self.predict_proba(X)
        return np.log(probas_)