File: dummy.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (551 lines) | stat: -rw-r--r-- 20,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Author: Mathieu Blondel <mathieu@mblondel.org>
#         Arnaud Joly <a.joly@ulg.ac.be>
#         Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk>
# License: BSD 3 clause
from __future__ import division

import warnings
import numpy as np
import scipy.sparse as sp

from .base import BaseEstimator, ClassifierMixin, RegressorMixin
from .utils import check_random_state
from .utils.validation import _num_samples
from .utils.validation import check_array
from .utils.validation import check_consistent_length
from .utils.validation import check_is_fitted
from .utils.random import random_choice_csc
from .utils.stats import _weighted_percentile
from .utils.multiclass import class_distribution


class DummyClassifier(BaseEstimator, ClassifierMixin):
    """
    DummyClassifier is a classifier that makes predictions using simple rules.

    This classifier is useful as a simple baseline to compare with other
    (real) classifiers. Do not use it for real problems.

    Read more in the :ref:`User Guide <dummy_estimators>`.

    Parameters
    ----------
    strategy : str, default="stratified"
        Strategy to use to generate predictions.

        * "stratified": generates predictions by respecting the training
          set's class distribution.
        * "most_frequent": always predicts the most frequent label in the
          training set.
        * "prior": always predicts the class that maximizes the class prior
          (like "most_frequent") and ``predict_proba`` returns the class prior.
        * "uniform": generates predictions uniformly at random.
        * "constant": always predicts a constant label that is provided by
          the user. This is useful for metrics that evaluate a non-majority
          class

          .. versionadded:: 0.17
             Dummy Classifier now supports prior fitting strategy using
             parameter *prior*.

    random_state : int, RandomState instance or None, optional, default=None
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    constant : int or str or array of shape = [n_outputs]
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.

    Attributes
    ----------
    classes_ : array or list of array of shape = [n_classes]
        Class labels for each output.

    n_classes_ : array or list of array of shape = [n_classes]
        Number of label for each output.

    class_prior_ : array or list of array of shape = [n_classes]
        Probability of each class for each output.

    n_outputs_ : int,
        Number of outputs.

    outputs_2d_ : bool,
        True if the output at fit is 2d, else false.

    sparse_output_ : bool,
        True if the array returned from predict is to be in sparse CSC format.
        Is automatically set to True if the input y is passed in sparse format.

    """

    def __init__(self, strategy="stratified", random_state=None,
                 constant=None):
        self.strategy = strategy
        self.random_state = random_state
        self.constant = constant

    def fit(self, X, y, sample_weight=None):
        """Fit the random classifier.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data, requires length = n_samples

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Target values.

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        self : object
        """
        allowed_strategies = ("most_frequent", "stratified", "uniform",
                              "constant", "prior")
        if self.strategy not in allowed_strategies:
            raise ValueError("Unknown strategy type: %s, expected one of %s."
                             % (self.strategy, allowed_strategies))

        if self.strategy == "uniform" and sp.issparse(y):
            y = y.toarray()
            warnings.warn('A local copy of the target data has been converted '
                          'to a numpy array. Predicting on sparse target data '
                          'with the uniform strategy would not save memory '
                          'and would be slower.',
                          UserWarning)

        self.sparse_output_ = sp.issparse(y)

        if not self.sparse_output_:
            y = np.atleast_1d(y)

        self.output_2d_ = y.ndim == 2
        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        check_consistent_length(X, y, sample_weight)

        if self.strategy == "constant":
            if self.constant is None:
                raise ValueError("Constant target value has to be specified "
                                 "when the constant strategy is used.")
            else:
                constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))
                if constant.shape[0] != self.n_outputs_:
                    raise ValueError("Constant target value should have "
                                     "shape (%d, 1)." % self.n_outputs_)

        (self.classes_,
         self.n_classes_,
         self.class_prior_) = class_distribution(y, sample_weight)

        if (self.strategy == "constant" and
                any(constant[k] not in self.classes_[k]
                    for k in range(self.n_outputs_))):
            # Checking in case of constant strategy if the constant
            # provided by the user is in y.
            raise ValueError("The constant target value must be "
                             "present in training data")

        if self.n_outputs_ == 1 and not self.output_2d_:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]
            self.class_prior_ = self.class_prior_[0]

        return self

    def predict(self, X):
        """Perform classification on test vectors X.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data, requires length = n_samples

        Returns
        -------
        y : array, shape = [n_samples] or [n_samples, n_outputs]
            Predicted target values for X.
        """
        check_is_fitted(self, 'classes_')

        # numpy random_state expects Python int and not long as size argument
        # under Windows
        n_samples = _num_samples(X)
        rs = check_random_state(self.random_state)

        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        constant = self.constant
        if self.n_outputs_ == 1:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]
            constant = [constant]
        # Compute probability only once
        if self.strategy == "stratified":
            proba = self.predict_proba(X)
            if self.n_outputs_ == 1:
                proba = [proba]

        if self.sparse_output_:
            class_prob = None
            if self.strategy in ("most_frequent", "prior"):
                classes_ = [np.array([cp.argmax()]) for cp in class_prior_]

            elif self.strategy == "stratified":
                class_prob = class_prior_

            elif self.strategy == "uniform":
                raise ValueError("Sparse target prediction is not "
                                 "supported with the uniform strategy")

            elif self.strategy == "constant":
                classes_ = [np.array([c]) for c in constant]

            y = random_choice_csc(n_samples, classes_, class_prob,
                                  self.random_state)
        else:
            if self.strategy in ("most_frequent", "prior"):
                y = np.tile([classes_[k][class_prior_[k].argmax()] for
                             k in range(self.n_outputs_)], [n_samples, 1])

            elif self.strategy == "stratified":
                y = np.vstack([classes_[k][proba[k].argmax(axis=1)] for
                               k in range(self.n_outputs_)]).T

            elif self.strategy == "uniform":
                ret = [classes_[k][rs.randint(n_classes_[k], size=n_samples)]
                       for k in range(self.n_outputs_)]
                y = np.vstack(ret).T

            elif self.strategy == "constant":
                y = np.tile(self.constant, (n_samples, 1))

            if self.n_outputs_ == 1 and not self.output_2d_:
                y = np.ravel(y)

        return y

    def predict_proba(self, X):
        """
        Return probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data, requires length = n_samples

        Returns
        -------
        P : array-like or list of array-lke of shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in
            the model, where classes are ordered arithmetically, for each
            output.
        """
        check_is_fitted(self, 'classes_')

        # numpy random_state expects Python int and not long as size argument
        # under Windows
        n_samples = _num_samples(X)
        rs = check_random_state(self.random_state)

        n_classes_ = self.n_classes_
        classes_ = self.classes_
        class_prior_ = self.class_prior_
        constant = self.constant
        if self.n_outputs_ == 1 and not self.output_2d_:
            # Get same type even for self.n_outputs_ == 1
            n_classes_ = [n_classes_]
            classes_ = [classes_]
            class_prior_ = [class_prior_]
            constant = [constant]

        P = []
        for k in range(self.n_outputs_):
            if self.strategy == "most_frequent":
                ind = class_prior_[k].argmax()
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0
            elif self.strategy == "prior":
                out = np.ones((n_samples, 1)) * class_prior_[k]

            elif self.strategy == "stratified":
                out = rs.multinomial(1, class_prior_[k], size=n_samples)

            elif self.strategy == "uniform":
                out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
                out /= n_classes_[k]

            elif self.strategy == "constant":
                ind = np.where(classes_[k] == constant[k])
                out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
                out[:, ind] = 1.0

            P.append(out)

        if self.n_outputs_ == 1 and not self.output_2d_:
            P = P[0]

        return P

    def predict_log_proba(self, X):
        """
        Return log probability estimates for the test vectors X.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data, requires length = n_samples

        Returns
        -------
        P : array-like or list of array-like of shape = [n_samples, n_classes]
            Returns the log probability of the sample for each class in
            the model, where classes are ordered arithmetically for each
            output.
        """
        proba = self.predict_proba(X)
        if self.n_outputs_ == 1:
            return np.log(proba)
        else:
            return [np.log(p) for p in proba]

    def score(self, X, y, sample_weight=None):
        """Returns the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : {array-like, None}
            Test samples with shape = (n_samples, n_features) or
            None. Passing None as test samples gives the same result
            as passing real test samples, since DummyClassifier
            operates independently of the sampled observations.

        y : array-like, shape = (n_samples) or (n_samples, n_outputs)
            True labels for X.

        sample_weight : array-like, shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of self.predict(X) wrt. y.

        """
        if X is None:
            X = np.zeros(shape=(len(y), 1))
        return super(DummyClassifier, self).score(X, y, sample_weight)


class DummyRegressor(BaseEstimator, RegressorMixin):
    """
    DummyRegressor is a regressor that makes predictions using
    simple rules.

    This regressor is useful as a simple baseline to compare with other
    (real) regressors. Do not use it for real problems.

    Read more in the :ref:`User Guide <dummy_estimators>`.

    Parameters
    ----------
    strategy : str
        Strategy to use to generate predictions.

        * "mean": always predicts the mean of the training set
        * "median": always predicts the median of the training set
        * "quantile": always predicts a specified quantile of the training set,
          provided with the quantile parameter.
        * "constant": always predicts a constant value that is provided by
          the user.

    constant : int or float or array of shape = [n_outputs]
        The explicit constant as predicted by the "constant" strategy. This
        parameter is useful only for the "constant" strategy.

    quantile : float in [0.0, 1.0]
        The quantile to predict using the "quantile" strategy. A quantile of
        0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
        maximum.

    Attributes
    ----------
    constant_ : float or array of shape [n_outputs]
        Mean or median or quantile of the training targets or constant value
        given by the user.

    n_outputs_ : int,
        Number of outputs.

    outputs_2d_ : bool,
        True if the output at fit is 2d, else false.
    """

    def __init__(self, strategy="mean", constant=None, quantile=None):
        self.strategy = strategy
        self.constant = constant
        self.quantile = quantile

    def fit(self, X, y, sample_weight=None):
        """Fit the random regressor.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data, requires length = n_samples

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            Target values.

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        self : object
        """
        allowed_strategies = ("mean", "median", "quantile", "constant")
        if self.strategy not in allowed_strategies:
            raise ValueError("Unknown strategy type: %s, expected one of %s."
                             % (self.strategy, allowed_strategies))

        y = check_array(y, ensure_2d=False)
        if len(y) == 0:
            raise ValueError("y must not be empty.")

        self.output_2d_ = y.ndim == 2
        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))
        self.n_outputs_ = y.shape[1]

        check_consistent_length(X, y, sample_weight)

        if self.strategy == "mean":
            self.constant_ = np.average(y, axis=0, weights=sample_weight)

        elif self.strategy == "median":
            if sample_weight is None:
                self.constant_ = np.median(y, axis=0)
            else:
                self.constant_ = [_weighted_percentile(y[:, k], sample_weight,
                                                       percentile=50.)
                                  for k in range(self.n_outputs_)]

        elif self.strategy == "quantile":
            if self.quantile is None or not np.isscalar(self.quantile):
                raise ValueError("Quantile must be a scalar in the range "
                                 "[0.0, 1.0], but got %s." % self.quantile)

            percentile = self.quantile * 100.0
            if sample_weight is None:
                self.constant_ = np.percentile(y, axis=0, q=percentile)
            else:
                self.constant_ = [_weighted_percentile(y[:, k], sample_weight,
                                                       percentile=percentile)
                                  for k in range(self.n_outputs_)]

        elif self.strategy == "constant":
            if self.constant is None:
                raise TypeError("Constant target value has to be specified "
                                "when the constant strategy is used.")

            self.constant = check_array(self.constant,
                                        accept_sparse=['csr', 'csc', 'coo'],
                                        ensure_2d=False, ensure_min_samples=0)

            if self.output_2d_ and self.constant.shape[0] != y.shape[1]:
                raise ValueError(
                    "Constant target value should have "
                    "shape (%d, 1)." % y.shape[1])

            self.constant_ = self.constant

        self.constant_ = np.reshape(self.constant_, (1, -1))
        return self

    def predict(self, X, return_std=False):
        """
        Perform classification on test vectors X.

        Parameters
        ----------
        X : {array-like, object with finite length or shape}
            Training data, requires length = n_samples

        return_std : boolean, optional
            Whether to return the standard deviation of posterior prediction.
            All zeros in this case.

        Returns
        -------
        y : array, shape = [n_samples]  or [n_samples, n_outputs]
            Predicted target values for X.

        y_std : array, shape = [n_samples]  or [n_samples, n_outputs]
            Standard deviation of predictive distribution of query points.
        """
        check_is_fitted(self, "constant_")
        n_samples = _num_samples(X)

        y = np.full((n_samples, self.n_outputs_), self.constant_,
                    dtype=np.array(self.constant_).dtype)
        y_std = np.zeros((n_samples, self.n_outputs_))

        if self.n_outputs_ == 1 and not self.output_2d_:
            y = np.ravel(y)
            y_std = np.ravel(y_std)

        return (y, y_std) if return_std else y

    def score(self, X, y, sample_weight=None):
        """Returns the coefficient of determination R^2 of the prediction.

        The coefficient R^2 is defined as (1 - u/v), where u is the residual
        sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
        sum of squares ((y_true - y_true.mean()) ** 2).sum().
        The best possible score is 1.0 and it can be negative (because the
        model can be arbitrarily worse). A constant model that always
        predicts the expected value of y, disregarding the input features,
        would get a R^2 score of 0.0.

        Parameters
        ----------
        X : {array-like, None}
            Test samples with shape = (n_samples, n_features) or None.
            For some estimators this may be a
            precomputed kernel matrix instead, shape = (n_samples,
            n_samples_fitted], where n_samples_fitted is the number of
            samples used in the fitting for the estimator.
            Passing None as test samples gives the same result
            as passing real test samples, since DummyRegressor
            operates independently of the sampled observations.

        y : array-like, shape = (n_samples) or (n_samples, n_outputs)
            True values for X.

        sample_weight : array-like, shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        score : float
            R^2 of self.predict(X) wrt. y.
        """
        if X is None:
            X = np.zeros(shape=(len(y), 1))
        return super(DummyRegressor, self).score(X, y, sample_weight)