1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
# Authors: Nicolas Goix <nicolas.goix@telecom-paristech.fr>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# License: BSD 3 clause
from __future__ import division
import numpy as np
from warnings import warn
from sklearn.utils.fixes import euler_gamma
from scipy.sparse import issparse
import numbers
from ..externals import six
from ..tree import ExtraTreeRegressor
from ..utils import check_random_state, check_array
from ..utils.validation import check_is_fitted
from ..base import OutlierMixin
from .bagging import BaseBagging
__all__ = ["IsolationForest"]
INTEGER_TYPES = (numbers.Integral, np.integer)
class IsolationForest(BaseBagging, OutlierMixin):
"""Isolation Forest Algorithm
Return the anomaly score of each sample using the IsolationForest algorithm
The IsolationForest 'isolates' observations by randomly selecting a feature
and then randomly selecting a split value between the maximum and minimum
values of the selected feature.
Since recursive partitioning can be represented by a tree structure, the
number of splittings required to isolate a sample is equivalent to the path
length from the root node to the terminating node.
This path length, averaged over a forest of such random trees, is a
measure of normality and our decision function.
Random partitioning produces noticeably shorter paths for anomalies.
Hence, when a forest of random trees collectively produce shorter path
lengths for particular samples, they are highly likely to be anomalies.
Read more in the :ref:`User Guide <isolation_forest>`.
.. versionadded:: 0.18
Parameters
----------
n_estimators : int, optional (default=100)
The number of base estimators in the ensemble.
max_samples : int or float, optional (default="auto")
The number of samples to draw from X to train each base estimator.
- If int, then draw `max_samples` samples.
- If float, then draw `max_samples * X.shape[0]` samples.
- If "auto", then `max_samples=min(256, n_samples)`.
If max_samples is larger than the number of samples provided,
all samples will be used for all trees (no sampling).
contamination : float in (0., 0.5), optional (default=0.1)
The amount of contamination of the data set, i.e. the proportion
of outliers in the data set. Used when fitting to define the threshold
on the decision function. If 'auto', the decision function threshold is
determined as in the original paper.
.. versionchanged:: 0.20
The default value of ``contamination`` will change from 0.1 in 0.20
to ``'auto'`` in 0.22.
max_features : int or float, optional (default=1.0)
The number of features to draw from X to train each base estimator.
- If int, then draw `max_features` features.
- If float, then draw `max_features * X.shape[1]` features.
bootstrap : boolean, optional (default=False)
If True, individual trees are fit on random subsets of the training
data sampled with replacement. If False, sampling without replacement
is performed.
n_jobs : int or None, optional (default=None)
The number of jobs to run in parallel for both `fit` and `predict`.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
behaviour : str, default='old'
Behaviour of the ``decision_function`` which can be either 'old' or
'new'. Passing ``behaviour='new'`` makes the ``decision_function``
change to match other anomaly detection algorithm API which will be
the default behaviour in the future. As explained in details in the
``offset_`` attribute documentation, the ``decision_function`` becomes
dependent on the contamination parameter, in such a way that 0 becomes
its natural threshold to detect outliers.
.. versionadded:: 0.20
``behaviour`` is added in 0.20 for back-compatibility purpose.
.. deprecated:: 0.20
``behaviour='old'`` is deprecated in 0.20 and will not be possible
in 0.22.
.. deprecated:: 0.22
``behaviour`` parameter will be deprecated in 0.22 and removed in
0.24.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the tree building process.
Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
estimators_samples_ : list of arrays
The subset of drawn samples (i.e., the in-bag samples) for each base
estimator.
max_samples_ : integer
The actual number of samples
offset_ : float
Offset used to define the decision function from the raw scores.
We have the relation: ``decision_function = score_samples - offset_``.
Assuming behaviour == 'new', ``offset_`` is defined as follows.
When the contamination parameter is set to "auto", the offset is equal
to -0.5 as the scores of inliers are close to 0 and the scores of
outliers are close to -1. When a contamination parameter different
than "auto" is provided, the offset is defined in such a way we obtain
the expected number of outliers (samples with decision function < 0)
in training.
Assuming the behaviour parameter is set to 'old', we always have
``offset_ = -0.5``, making the decision function independent from the
contamination parameter.
References
----------
.. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest."
Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on.
.. [2] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation-based
anomaly detection." ACM Transactions on Knowledge Discovery from
Data (TKDD) 6.1 (2012): 3.
"""
def __init__(self,
n_estimators=100,
max_samples="auto",
contamination="legacy",
max_features=1.,
bootstrap=False,
n_jobs=None,
behaviour='old',
random_state=None,
verbose=0):
super(IsolationForest, self).__init__(
base_estimator=ExtraTreeRegressor(
max_features=1,
splitter='random',
random_state=random_state),
# here above max_features has no links with self.max_features
bootstrap=bootstrap,
bootstrap_features=False,
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose)
self.behaviour = behaviour
self.contamination = contamination
def _set_oob_score(self, X, y):
raise NotImplementedError("OOB score not supported by iforest")
def fit(self, X, y=None, sample_weight=None):
"""Fit estimator.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
The input samples. Use ``dtype=np.float32`` for maximum
efficiency. Sparse matrices are also supported, use sparse
``csc_matrix`` for maximum efficiency.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
y : Ignored
not used, present for API consistency by convention.
Returns
-------
self : object
"""
if self.contamination == "legacy":
warn('default contamination parameter 0.1 will change '
'in version 0.22 to "auto". This will change the '
'predict method behavior.',
FutureWarning)
self._contamination = 0.1
else:
self._contamination = self.contamination
if self.behaviour == 'old':
warn('behaviour="old" is deprecated and will be removed '
'in version 0.22. Please use behaviour="new", which '
'makes the decision_function change to match '
'other anomaly detection algorithm API.',
FutureWarning)
X = check_array(X, accept_sparse=['csc'])
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
rnd = check_random_state(self.random_state)
y = rnd.uniform(size=X.shape[0])
# ensure that max_sample is in [1, n_samples]:
n_samples = X.shape[0]
if isinstance(self.max_samples, six.string_types):
if self.max_samples == 'auto':
max_samples = min(256, n_samples)
else:
raise ValueError('max_samples (%s) is not supported.'
'Valid choices are: "auto", int or'
'float' % self.max_samples)
elif isinstance(self.max_samples, INTEGER_TYPES):
if self.max_samples > n_samples:
warn("max_samples (%s) is greater than the "
"total number of samples (%s). max_samples "
"will be set to n_samples for estimation."
% (self.max_samples, n_samples))
max_samples = n_samples
else:
max_samples = self.max_samples
else: # float
if not (0. < self.max_samples <= 1.):
raise ValueError("max_samples must be in (0, 1], got %r"
% self.max_samples)
max_samples = int(self.max_samples * X.shape[0])
self.max_samples_ = max_samples
max_depth = int(np.ceil(np.log2(max(max_samples, 2))))
super(IsolationForest, self)._fit(X, y, max_samples,
max_depth=max_depth,
sample_weight=sample_weight)
if self.behaviour == 'old':
# in this case, decision_function = 0.5 + self.score_samples(X):
if self._contamination == "auto":
raise ValueError("contamination parameter cannot be set to "
"'auto' when behaviour == 'old'.")
self.offset_ = -0.5
self._threshold_ = np.percentile(self.decision_function(X),
100. * self._contamination)
return self
# else, self.behaviour == 'new':
if self._contamination == "auto":
# 0.5 plays a special role as described in the original paper.
# we take the opposite as we consider the opposite of their score.
self.offset_ = -0.5
return self
# else, define offset_ wrt contamination parameter, so that the
# threshold_ attribute is implicitly 0 and is not needed anymore:
self.offset_ = np.percentile(self.score_samples(X),
100. * self._contamination)
return self
def predict(self, X):
"""Predict if a particular sample is an outlier or not.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
is_inlier : array, shape (n_samples,)
For each observation, tells whether or not (+1 or -1) it should
be considered as an inlier according to the fitted model.
"""
check_is_fitted(self, ["offset_"])
X = check_array(X, accept_sparse='csr')
is_inlier = np.ones(X.shape[0], dtype=int)
threshold = self.threshold_ if self.behaviour == 'old' else 0
is_inlier[self.decision_function(X) < threshold] = -1
return is_inlier
def decision_function(self, X):
"""Average anomaly score of X of the base classifiers.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
The measure of normality of an observation given a tree is the depth
of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this point. In case of
several observations n_left in the leaf, the average path length of
a n_left samples isolation tree is added.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
scores : array, shape (n_samples,)
The anomaly score of the input samples.
The lower, the more abnormal. Negative scores represent outliers,
positive scores represent inliers.
"""
# We subtract self.offset_ to make 0 be the threshold value for being
# an outlier:
return self.score_samples(X) - self.offset_
def score_samples(self, X):
"""Opposite of the anomaly score defined in the original paper.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
The measure of normality of an observation given a tree is the depth
of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this point. In case of
several observations n_left in the leaf, the average path length of
a n_left samples isolation tree is added.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only if
they are supported by the base estimator.
Returns
-------
scores : array, shape (n_samples,)
The anomaly score of the input samples.
The lower, the more abnormal.
"""
# code structure from ForestClassifier/predict_proba
check_is_fitted(self, ["estimators_"])
# Check data
X = check_array(X, accept_sparse='csr')
if self.n_features_ != X.shape[1]:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is {0} and "
"input n_features is {1}."
"".format(self.n_features_, X.shape[1]))
n_samples = X.shape[0]
n_samples_leaf = np.zeros((n_samples, self.n_estimators), order="f")
depths = np.zeros((n_samples, self.n_estimators), order="f")
if self._max_features == X.shape[1]:
subsample_features = False
else:
subsample_features = True
for i, (tree, features) in enumerate(zip(self.estimators_,
self.estimators_features_)):
if subsample_features:
X_subset = X[:, features]
else:
X_subset = X
leaves_index = tree.apply(X_subset)
node_indicator = tree.decision_path(X_subset)
n_samples_leaf[:, i] = tree.tree_.n_node_samples[leaves_index]
depths[:, i] = np.ravel(node_indicator.sum(axis=1))
depths[:, i] -= 1
depths += _average_path_length(n_samples_leaf)
scores = 2 ** (-depths.mean(axis=1) / _average_path_length(
self.max_samples_))
# Take the opposite of the scores as bigger is better (here less
# abnormal)
return -scores
@property
def threshold_(self):
if self.behaviour != 'old':
raise AttributeError("threshold_ attribute does not exist when "
"behaviour != 'old'")
warn("threshold_ attribute is deprecated in 0.20 and will"
" be removed in 0.22.", DeprecationWarning)
return self._threshold_
def _average_path_length(n_samples_leaf):
""" The average path length in a n_samples iTree, which is equal to
the average path length of an unsuccessful BST search since the
latter has the same structure as an isolation tree.
Parameters
----------
n_samples_leaf : array-like, shape (n_samples, n_estimators), or int.
The number of training samples in each test sample leaf, for
each estimators.
Returns
-------
average_path_length : array, same shape as n_samples_leaf
"""
if isinstance(n_samples_leaf, INTEGER_TYPES):
if n_samples_leaf <= 1:
return 1.
else:
return 2. * (np.log(n_samples_leaf - 1.) + euler_gamma) - 2. * (
n_samples_leaf - 1.) / n_samples_leaf
else:
n_samples_leaf_shape = n_samples_leaf.shape
n_samples_leaf = n_samples_leaf.reshape((1, -1))
average_path_length = np.zeros(n_samples_leaf.shape)
mask = (n_samples_leaf <= 1)
not_mask = np.logical_not(mask)
average_path_length[mask] = 1.
average_path_length[not_mask] = 2. * (
np.log(n_samples_leaf[not_mask] - 1.) + euler_gamma) - 2. * (
n_samples_leaf[not_mask] - 1.) / n_samples_leaf[not_mask]
return average_path_length.reshape(n_samples_leaf_shape)
|