1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
"""
Soft Voting/Majority Rule classifier.
This module contains a Soft Voting/Majority Rule classifier for
classification estimators.
"""
# Authors: Sebastian Raschka <se.raschka@gmail.com>,
# Gilles Louppe <g.louppe@gmail.com>
#
# License: BSD 3 clause
import numpy as np
import warnings
from ..base import ClassifierMixin
from ..base import TransformerMixin
from ..base import clone
from ..preprocessing import LabelEncoder
from ..utils._joblib import Parallel, delayed
from ..utils.validation import has_fit_parameter, check_is_fitted
from ..utils.metaestimators import _BaseComposition
from ..utils import Bunch
def _parallel_fit_estimator(estimator, X, y, sample_weight=None):
"""Private function used to fit an estimator within a job."""
if sample_weight is not None:
estimator.fit(X, y, sample_weight=sample_weight)
else:
estimator.fit(X, y)
return estimator
class VotingClassifier(_BaseComposition, ClassifierMixin, TransformerMixin):
"""Soft Voting/Majority Rule classifier for unfitted estimators.
.. versionadded:: 0.17
Read more in the :ref:`User Guide <voting_classifier>`.
Parameters
----------
estimators : list of (string, estimator) tuples
Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones
of those original estimators that will be stored in the class attribute
``self.estimators_``. An estimator can be set to `None` using
``set_params``.
voting : str, {'hard', 'soft'} (default='hard')
If 'hard', uses predicted class labels for majority rule voting.
Else if 'soft', predicts the class label based on the argmax of
the sums of the predicted probabilities, which is recommended for
an ensemble of well-calibrated classifiers.
weights : array-like, shape = [n_classifiers], optional (default=`None`)
Sequence of weights (`float` or `int`) to weight the occurrences of
predicted class labels (`hard` voting) or class probabilities
before averaging (`soft` voting). Uses uniform weights if `None`.
n_jobs : int or None, optional (default=None)
The number of jobs to run in parallel for ``fit``.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
flatten_transform : bool, optional (default=None)
Affects shape of transform output only when voting='soft'
If voting='soft' and flatten_transform=True, transform method returns
matrix with shape (n_samples, n_classifiers * n_classes). If
flatten_transform=False, it returns
(n_classifiers, n_samples, n_classes).
Attributes
----------
estimators_ : list of classifiers
The collection of fitted sub-estimators as defined in ``estimators``
that are not `None`.
named_estimators_ : Bunch object, a dictionary with attribute access
Attribute to access any fitted sub-estimators by name.
.. versionadded:: 0.20
classes_ : array-like, shape = [n_predictions]
The classes labels.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier
>>> clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial',
... random_state=1)
>>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
>>> clf3 = GaussianNB()
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> eclf1 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
>>> eclf1 = eclf1.fit(X, y)
>>> print(eclf1.predict(X))
[1 1 1 2 2 2]
>>> np.array_equal(eclf1.named_estimators_.lr.predict(X),
... eclf1.named_estimators_['lr'].predict(X))
True
>>> eclf2 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft')
>>> eclf2 = eclf2.fit(X, y)
>>> print(eclf2.predict(X))
[1 1 1 2 2 2]
>>> eclf3 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft', weights=[2,1,1],
... flatten_transform=True)
>>> eclf3 = eclf3.fit(X, y)
>>> print(eclf3.predict(X))
[1 1 1 2 2 2]
>>> print(eclf3.transform(X).shape)
(6, 6)
"""
def __init__(self, estimators, voting='hard', weights=None, n_jobs=None,
flatten_transform=None):
self.estimators = estimators
self.voting = voting
self.weights = weights
self.n_jobs = n_jobs
self.flatten_transform = flatten_transform
@property
def named_estimators(self):
return Bunch(**dict(self.estimators))
def fit(self, X, y, sample_weight=None):
""" Fit the estimators.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted.
Note that this is supported only if all underlying estimators
support sample weights.
Returns
-------
self : object
"""
if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1:
raise NotImplementedError('Multilabel and multi-output'
' classification is not supported.')
if self.voting not in ('soft', 'hard'):
raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)"
% self.voting)
if self.estimators is None or len(self.estimators) == 0:
raise AttributeError('Invalid `estimators` attribute, `estimators`'
' should be a list of (string, estimator)'
' tuples')
if (self.weights is not None and
len(self.weights) != len(self.estimators)):
raise ValueError('Number of classifiers and weights must be equal'
'; got %d weights, %d estimators'
% (len(self.weights), len(self.estimators)))
if sample_weight is not None:
for name, step in self.estimators:
if not has_fit_parameter(step, 'sample_weight'):
raise ValueError('Underlying estimator \'%s\' does not'
' support sample weights.' % name)
names, clfs = zip(*self.estimators)
self._validate_names(names)
n_isnone = np.sum([clf is None for _, clf in self.estimators])
if n_isnone == len(self.estimators):
raise ValueError('All estimators are None. At least one is '
'required to be a classifier!')
self.le_ = LabelEncoder().fit(y)
self.classes_ = self.le_.classes_
self.estimators_ = []
transformed_y = self.le_.transform(y)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_parallel_fit_estimator)(clone(clf), X, transformed_y,
sample_weight=sample_weight)
for clf in clfs if clf is not None)
self.named_estimators_ = Bunch(**dict())
for k, e in zip(self.estimators, self.estimators_):
self.named_estimators_[k[0]] = e
return self
@property
def _weights_not_none(self):
"""Get the weights of not `None` estimators"""
if self.weights is None:
return None
return [w for est, w in zip(self.estimators,
self.weights) if est[1] is not None]
def predict(self, X):
""" Predict class labels for X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
----------
maj : array-like, shape = [n_samples]
Predicted class labels.
"""
check_is_fitted(self, 'estimators_')
if self.voting == 'soft':
maj = np.argmax(self.predict_proba(X), axis=1)
else: # 'hard' voting
predictions = self._predict(X)
maj = np.apply_along_axis(
lambda x: np.argmax(
np.bincount(x, weights=self._weights_not_none)),
axis=1, arr=predictions)
maj = self.le_.inverse_transform(maj)
return maj
def _collect_probas(self, X):
"""Collect results from clf.predict calls. """
return np.asarray([clf.predict_proba(X) for clf in self.estimators_])
def _predict_proba(self, X):
"""Predict class probabilities for X in 'soft' voting """
if self.voting == 'hard':
raise AttributeError("predict_proba is not available when"
" voting=%r" % self.voting)
check_is_fitted(self, 'estimators_')
avg = np.average(self._collect_probas(X), axis=0,
weights=self._weights_not_none)
return avg
@property
def predict_proba(self):
"""Compute probabilities of possible outcomes for samples in X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
----------
avg : array-like, shape = [n_samples, n_classes]
Weighted average probability for each class per sample.
"""
return self._predict_proba
def transform(self, X):
"""Return class labels or probabilities for X for each estimator.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
Returns
-------
probabilities_or_labels
If `voting='soft'` and `flatten_transform=True`:
returns array-like of shape (n_classifiers, n_samples *
n_classes), being class probabilities calculated by each
classifier.
If `voting='soft' and `flatten_transform=False`:
array-like of shape (n_classifiers, n_samples, n_classes)
If `voting='hard'`:
array-like of shape (n_samples, n_classifiers), being
class labels predicted by each classifier.
"""
check_is_fitted(self, 'estimators_')
if self.voting == 'soft':
probas = self._collect_probas(X)
if self.flatten_transform is None:
warnings.warn("'flatten_transform' default value will be "
"changed to True in 0.21. "
"To silence this warning you may"
" explicitly set flatten_transform=False.",
DeprecationWarning)
return probas
elif not self.flatten_transform:
return probas
else:
return np.hstack(probas)
else:
return self._predict(X)
def set_params(self, **params):
""" Setting the parameters for the voting classifier
Valid parameter keys can be listed with get_params().
Parameters
----------
**params : keyword arguments
Specific parameters using e.g. set_params(parameter_name=new_value)
In addition, to setting the parameters of the ``VotingClassifier``,
the individual classifiers of the ``VotingClassifier`` can also be
set or replaced by setting them to None.
Examples
--------
# In this example, the RandomForestClassifier is removed
clf1 = LogisticRegression()
clf2 = RandomForestClassifier()
eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)]
eclf.set_params(rf=None)
"""
super(VotingClassifier, self)._set_params('estimators', **params)
return self
def get_params(self, deep=True):
""" Get the parameters of the VotingClassifier
Parameters
----------
deep : bool
Setting it to True gets the various classifiers and the parameters
of the classifiers as well
"""
return super(VotingClassifier,
self)._get_params('estimators', deep=deep)
def _predict(self, X):
"""Collect results from clf.predict calls. """
return np.asarray([clf.predict(X) for clf in self.estimators_]).T
|