File: weight_boosting.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1123 lines) | stat: -rw-r--r-- 41,125 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
"""Weight Boosting

This module contains weight boosting estimators for both classification and
regression.

The module structure is the following:

- The ``BaseWeightBoosting`` base class implements a common ``fit`` method
  for all the estimators in the module. Regression and classification
  only differ from each other in the loss function that is optimized.

- ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for
  classification problems.

- ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for
  regression problems.
"""

# Authors: Noel Dawe <noel@dawe.me>
#          Gilles Louppe <g.louppe@gmail.com>
#          Hamzeh Alsalhi <ha258@cornell.edu>
#          Arnaud Joly <arnaud.v.joly@gmail.com>
#
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod

import numpy as np

from .base import BaseEnsemble
from ..base import ClassifierMixin, RegressorMixin, is_regressor, is_classifier
from ..externals import six
from ..externals.six.moves import zip
from ..externals.six.moves import xrange as range
from .forest import BaseForest
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
from ..tree.tree import BaseDecisionTree
from ..tree._tree import DTYPE
from ..utils import check_array, check_X_y, check_random_state
from ..utils.extmath import stable_cumsum
from ..metrics import accuracy_score, r2_score
from sklearn.utils.validation import has_fit_parameter, check_is_fitted

__all__ = [
    'AdaBoostClassifier',
    'AdaBoostRegressor',
]


class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)):
    """Base class for AdaBoost estimators.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator=None,
                 n_estimators=50,
                 estimator_params=tuple(),
                 learning_rate=1.,
                 random_state=None):

        super(BaseWeightBoosting, self).__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params)

        self.learning_rate = learning_rate
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        """Build a boosted classifier/regressor from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is
            forced to DTYPE from tree._tree if the base classifier of this
            ensemble weighted boosting classifier is a tree or forest.

        y : array-like of shape = [n_samples]
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights. If None, the sample weights are initialized to
            1 / n_samples.

        Returns
        -------
        self : object
        """
        # Check parameters
        if self.learning_rate <= 0:
            raise ValueError("learning_rate must be greater than zero")

        if (self.base_estimator is None or
                isinstance(self.base_estimator, (BaseDecisionTree,
                                                 BaseForest))):
            dtype = DTYPE
            accept_sparse = 'csc'
        else:
            dtype = None
            accept_sparse = ['csr', 'csc']

        X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype,
                         y_numeric=is_regressor(self))

        if sample_weight is None:
            # Initialize weights to 1 / n_samples
            sample_weight = np.empty(X.shape[0], dtype=np.float64)
            sample_weight[:] = 1. / X.shape[0]
        else:
            sample_weight = check_array(sample_weight, ensure_2d=False)
            # Normalize existing weights
            sample_weight = sample_weight / sample_weight.sum(dtype=np.float64)

            # Check that the sample weights sum is positive
            if sample_weight.sum() <= 0:
                raise ValueError(
                    "Attempting to fit with a non-positive "
                    "weighted number of samples.")

        # Check parameters
        self._validate_estimator()

        # Clear any previous fit results
        self.estimators_ = []
        self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
        self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)

        random_state = check_random_state(self.random_state)

        for iboost in range(self.n_estimators):
            # Boosting step
            sample_weight, estimator_weight, estimator_error = self._boost(
                iboost,
                X, y,
                sample_weight,
                random_state)

            # Early termination
            if sample_weight is None:
                break

            self.estimator_weights_[iboost] = estimator_weight
            self.estimator_errors_[iboost] = estimator_error

            # Stop if error is zero
            if estimator_error == 0:
                break

            sample_weight_sum = np.sum(sample_weight)

            # Stop if the sum of sample weights has become non-positive
            if sample_weight_sum <= 0:
                break

            if iboost < self.n_estimators - 1:
                # Normalize
                sample_weight /= sample_weight_sum

        return self

    @abstractmethod
    def _boost(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost.

        Warning: This method needs to be overridden by subclasses.

        Parameters
        ----------
        iboost : int
            The index of the current boost iteration.

        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        y : array-like of shape = [n_samples]
            The target values (class labels).

        sample_weight : array-like of shape = [n_samples]
            The current sample weights.

        random_state : RandomState
            The current random number generator

        Returns
        -------
        sample_weight : array-like of shape = [n_samples] or None
            The reweighted sample weights.
            If None then boosting has terminated early.

        estimator_weight : float
            The weight for the current boost.
            If None then boosting has terminated early.

        error : float
            The classification error for the current boost.
            If None then boosting has terminated early.
        """
        pass

    def staged_score(self, X, y, sample_weight=None):
        """Return staged scores for X, y.

        This generator method yields the ensemble score after each iteration of
        boosting and therefore allows monitoring, such as to determine the
        score on a test set after each boost.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        y : array-like, shape = [n_samples]
            Labels for X.

        sample_weight : array-like, shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        z : float
        """
        for y_pred in self.staged_predict(X):
            if is_classifier(self):
                yield accuracy_score(y, y_pred, sample_weight=sample_weight)
            else:
                yield r2_score(y, y_pred, sample_weight=sample_weight)

    @property
    def feature_importances_(self):
        """Return the feature importances (the higher, the more important the
           feature).

        Returns
        -------
        feature_importances_ : array, shape = [n_features]
        """
        if self.estimators_ is None or len(self.estimators_) == 0:
            raise ValueError("Estimator not fitted, "
                             "call `fit` before `feature_importances_`.")

        try:
            norm = self.estimator_weights_.sum()
            return (sum(weight * clf.feature_importances_ for weight, clf
                    in zip(self.estimator_weights_, self.estimators_))
                    / norm)

        except AttributeError:
            raise AttributeError(
                "Unable to compute feature importances "
                "since base_estimator does not have a "
                "feature_importances_ attribute")

    def _validate_X_predict(self, X):
        """Ensure that X is in the proper format"""
        if (self.base_estimator is None or
                isinstance(self.base_estimator,
                           (BaseDecisionTree, BaseForest))):
            X = check_array(X, accept_sparse='csr', dtype=DTYPE)

        else:
            X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])

        return X


def _samme_proba(estimator, n_classes, X):
    """Calculate algorithm 4, step 2, equation c) of Zhu et al [1].

    References
    ----------
    .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

    """
    proba = estimator.predict_proba(X)

    # Displace zero probabilities so the log is defined.
    # Also fix negative elements which may occur with
    # negative sample weights.
    np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)
    log_proba = np.log(proba)

    return (n_classes - 1) * (log_proba - (1. / n_classes)
                              * log_proba.sum(axis=1)[:, np.newaxis])


class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin):
    """An AdaBoost classifier.

    An AdaBoost [1] classifier is a meta-estimator that begins by fitting a
    classifier on the original dataset and then fits additional copies of the
    classifier on the same dataset but where the weights of incorrectly
    classified instances are adjusted such that subsequent classifiers focus
    more on difficult cases.

    This class implements the algorithm known as AdaBoost-SAMME [2].

    Read more in the :ref:`User Guide <adaboost>`.

    Parameters
    ----------
    base_estimator : object, optional (default=None)
        The base estimator from which the boosted ensemble is built.
        Support for sample weighting is required, as well as proper
        ``classes_`` and ``n_classes_`` attributes. If ``None``, then
        the base estimator is ``DecisionTreeClassifier(max_depth=1)``

    n_estimators : integer, optional (default=50)
        The maximum number of estimators at which boosting is terminated.
        In case of perfect fit, the learning procedure is stopped early.

    learning_rate : float, optional (default=1.)
        Learning rate shrinks the contribution of each classifier by
        ``learning_rate``. There is a trade-off between ``learning_rate`` and
        ``n_estimators``.

    algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
        If 'SAMME.R' then use the SAMME.R real boosting algorithm.
        ``base_estimator`` must support calculation of class probabilities.
        If 'SAMME' then use the SAMME discrete boosting algorithm.
        The SAMME.R algorithm typically converges faster than SAMME,
        achieving a lower test error with fewer boosting iterations.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    estimators_ : list of classifiers
        The collection of fitted sub-estimators.

    classes_ : array of shape = [n_classes]
        The classes labels.

    n_classes_ : int
        The number of classes.

    estimator_weights_ : array of floats
        Weights for each estimator in the boosted ensemble.

    estimator_errors_ : array of floats
        Classification error for each estimator in the boosted
        ensemble.

    feature_importances_ : array of shape = [n_features]
        The feature importances if supported by the ``base_estimator``.

    See also
    --------
    AdaBoostRegressor, GradientBoostingClassifier,
    sklearn.tree.DecisionTreeClassifier

    References
    ----------
    .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
           on-Line Learning and an Application to Boosting", 1995.

    .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

    """
    def __init__(self,
                 base_estimator=None,
                 n_estimators=50,
                 learning_rate=1.,
                 algorithm='SAMME.R',
                 random_state=None):

        super(AdaBoostClassifier, self).__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            learning_rate=learning_rate,
            random_state=random_state)

        self.algorithm = algorithm

    def fit(self, X, y, sample_weight=None):
        """Build a boosted classifier from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        y : array-like of shape = [n_samples]
            The target values (class labels).

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights. If None, the sample weights are initialized to
            ``1 / n_samples``.

        Returns
        -------
        self : object
        """
        # Check that algorithm is supported
        if self.algorithm not in ('SAMME', 'SAMME.R'):
            raise ValueError("algorithm %s is not supported" % self.algorithm)

        # Fit
        return super(AdaBoostClassifier, self).fit(X, y, sample_weight)

    def _validate_estimator(self):
        """Check the estimator and set the base_estimator_ attribute."""
        super(AdaBoostClassifier, self)._validate_estimator(
            default=DecisionTreeClassifier(max_depth=1))

        #  SAMME-R requires predict_proba-enabled base estimators
        if self.algorithm == 'SAMME.R':
            if not hasattr(self.base_estimator_, 'predict_proba'):
                raise TypeError(
                    "AdaBoostClassifier with algorithm='SAMME.R' requires "
                    "that the weak learner supports the calculation of class "
                    "probabilities with a predict_proba method.\n"
                    "Please change the base estimator or set "
                    "algorithm='SAMME' instead.")
        if not has_fit_parameter(self.base_estimator_, "sample_weight"):
            raise ValueError("%s doesn't support sample_weight."
                             % self.base_estimator_.__class__.__name__)

    def _boost(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost.

        Perform a single boost according to the real multi-class SAMME.R
        algorithm or to the discrete SAMME algorithm and return the updated
        sample weights.

        Parameters
        ----------
        iboost : int
            The index of the current boost iteration.

        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        y : array-like of shape = [n_samples]
            The target values (class labels).

        sample_weight : array-like of shape = [n_samples]
            The current sample weights.

        random_state : RandomState
            The current random number generator

        Returns
        -------
        sample_weight : array-like of shape = [n_samples] or None
            The reweighted sample weights.
            If None then boosting has terminated early.

        estimator_weight : float
            The weight for the current boost.
            If None then boosting has terminated early.

        estimator_error : float
            The classification error for the current boost.
            If None then boosting has terminated early.
        """
        if self.algorithm == 'SAMME.R':
            return self._boost_real(iboost, X, y, sample_weight, random_state)

        else:  # elif self.algorithm == "SAMME":
            return self._boost_discrete(iboost, X, y, sample_weight,
                                        random_state)

    def _boost_real(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost using the SAMME.R real algorithm."""
        estimator = self._make_estimator(random_state=random_state)

        estimator.fit(X, y, sample_weight=sample_weight)

        y_predict_proba = estimator.predict_proba(X)

        if iboost == 0:
            self.classes_ = getattr(estimator, 'classes_', None)
            self.n_classes_ = len(self.classes_)

        y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1),
                                       axis=0)

        # Instances incorrectly classified
        incorrect = y_predict != y

        # Error fraction
        estimator_error = np.mean(
            np.average(incorrect, weights=sample_weight, axis=0))

        # Stop if classification is perfect
        if estimator_error <= 0:
            return sample_weight, 1., 0.

        # Construct y coding as described in Zhu et al [2]:
        #
        #    y_k = 1 if c == k else -1 / (K - 1)
        #
        # where K == n_classes_ and c, k in [0, K) are indices along the second
        # axis of the y coding with c being the index corresponding to the true
        # class label.
        n_classes = self.n_classes_
        classes = self.classes_
        y_codes = np.array([-1. / (n_classes - 1), 1.])
        y_coding = y_codes.take(classes == y[:, np.newaxis])

        # Displace zero probabilities so the log is defined.
        # Also fix negative elements which may occur with
        # negative sample weights.
        proba = y_predict_proba  # alias for readability
        np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)

        # Boost weight using multi-class AdaBoost SAMME.R alg
        estimator_weight = (-1. * self.learning_rate
                            * ((n_classes - 1.) / n_classes)
                            * (y_coding * np.log(y_predict_proba)).sum(axis=1))

        # Only boost the weights if it will fit again
        if not iboost == self.n_estimators - 1:
            # Only boost positive weights
            sample_weight *= np.exp(estimator_weight *
                                    ((sample_weight > 0) |
                                     (estimator_weight < 0)))

        return sample_weight, 1., estimator_error

    def _boost_discrete(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost using the SAMME discrete algorithm."""
        estimator = self._make_estimator(random_state=random_state)

        estimator.fit(X, y, sample_weight=sample_weight)

        y_predict = estimator.predict(X)

        if iboost == 0:
            self.classes_ = getattr(estimator, 'classes_', None)
            self.n_classes_ = len(self.classes_)

        # Instances incorrectly classified
        incorrect = y_predict != y

        # Error fraction
        estimator_error = np.mean(
            np.average(incorrect, weights=sample_weight, axis=0))

        # Stop if classification is perfect
        if estimator_error <= 0:
            return sample_weight, 1., 0.

        n_classes = self.n_classes_

        # Stop if the error is at least as bad as random guessing
        if estimator_error >= 1. - (1. / n_classes):
            self.estimators_.pop(-1)
            if len(self.estimators_) == 0:
                raise ValueError('BaseClassifier in AdaBoostClassifier '
                                 'ensemble is worse than random, ensemble '
                                 'can not be fit.')
            return None, None, None

        # Boost weight using multi-class AdaBoost SAMME alg
        estimator_weight = self.learning_rate * (
            np.log((1. - estimator_error) / estimator_error) +
            np.log(n_classes - 1.))

        # Only boost the weights if I will fit again
        if not iboost == self.n_estimators - 1:
            # Only boost positive weights
            sample_weight *= np.exp(estimator_weight * incorrect *
                                    ((sample_weight > 0) |
                                     (estimator_weight < 0)))

        return sample_weight, estimator_weight, estimator_error

    def predict(self, X):
        """Predict classes for X.

        The predicted class of an input sample is computed as the weighted mean
        prediction of the classifiers in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        y : array of shape = [n_samples]
            The predicted classes.
        """
        pred = self.decision_function(X)

        if self.n_classes_ == 2:
            return self.classes_.take(pred > 0, axis=0)

        return self.classes_.take(np.argmax(pred, axis=1), axis=0)

    def staged_predict(self, X):
        """Return staged predictions for X.

        The predicted class of an input sample is computed as the weighted mean
        prediction of the classifiers in the ensemble.

        This generator method yields the ensemble prediction after each
        iteration of boosting and therefore allows monitoring, such as to
        determine the prediction on a test set after each boost.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y : generator of array, shape = [n_samples]
            The predicted classes.
        """
        n_classes = self.n_classes_
        classes = self.classes_

        if n_classes == 2:
            for pred in self.staged_decision_function(X):
                yield np.array(classes.take(pred > 0, axis=0))

        else:
            for pred in self.staged_decision_function(X):
                yield np.array(classes.take(
                    np.argmax(pred, axis=1), axis=0))

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        score : array, shape = [n_samples, k]
            The decision function of the input samples. The order of
            outputs is the same of that of the `classes_` attribute.
            Binary classification is a special cases with ``k == 1``,
            otherwise ``k==n_classes``. For binary classification,
            values closer to -1 or 1 mean more like the first or second
            class in ``classes_``, respectively.
        """
        check_is_fitted(self, "n_classes_")
        X = self._validate_X_predict(X)

        n_classes = self.n_classes_
        classes = self.classes_[:, np.newaxis]
        pred = None

        if self.algorithm == 'SAMME.R':
            # The weights are all 1. for SAMME.R
            pred = sum(_samme_proba(estimator, n_classes, X)
                       for estimator in self.estimators_)
        else:   # self.algorithm == "SAMME"
            pred = sum((estimator.predict(X) == classes).T * w
                       for estimator, w in zip(self.estimators_,
                                               self.estimator_weights_))

        pred /= self.estimator_weights_.sum()
        if n_classes == 2:
            pred[:, 0] *= -1
            return pred.sum(axis=1)
        return pred

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each boosting iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each boosting iteration.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        score : generator of array, shape = [n_samples, k]
            The decision function of the input samples. The order of
            outputs is the same of that of the `classes_` attribute.
            Binary classification is a special cases with ``k == 1``,
            otherwise ``k==n_classes``. For binary classification,
            values closer to -1 or 1 mean more like the first or second
            class in ``classes_``, respectively.
        """
        check_is_fitted(self, "n_classes_")
        X = self._validate_X_predict(X)

        n_classes = self.n_classes_
        classes = self.classes_[:, np.newaxis]
        pred = None
        norm = 0.

        for weight, estimator in zip(self.estimator_weights_,
                                     self.estimators_):
            norm += weight

            if self.algorithm == 'SAMME.R':
                # The weights are all 1. for SAMME.R
                current_pred = _samme_proba(estimator, n_classes, X)
            else:  # elif self.algorithm == "SAMME":
                current_pred = estimator.predict(X)
                current_pred = (current_pred == classes).T * weight

            if pred is None:
                pred = current_pred
            else:
                pred += current_pred

            if n_classes == 2:
                tmp_pred = np.copy(pred)
                tmp_pred[:, 0] *= -1
                yield (tmp_pred / norm).sum(axis=1)
            else:
                yield pred / norm

    def predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the weighted mean predicted class probabilities of the classifiers
        in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        p : array of shape = [n_samples, n_classes]
            The class probabilities of the input samples. The order of
            outputs is the same of that of the `classes_` attribute.
        """
        check_is_fitted(self, "n_classes_")

        n_classes = self.n_classes_
        X = self._validate_X_predict(X)

        if n_classes == 1:
            return np.ones((X.shape[0], 1))

        if self.algorithm == 'SAMME.R':
            # The weights are all 1. for SAMME.R
            proba = sum(_samme_proba(estimator, n_classes, X)
                        for estimator in self.estimators_)
        else:   # self.algorithm == "SAMME"
            proba = sum(estimator.predict_proba(X) * w
                        for estimator, w in zip(self.estimators_,
                                                self.estimator_weights_))

        proba /= self.estimator_weights_.sum()
        proba = np.exp((1. / (n_classes - 1)) * proba)
        normalizer = proba.sum(axis=1)[:, np.newaxis]
        normalizer[normalizer == 0.0] = 1.0
        proba /= normalizer

        return proba

    def staged_predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the weighted mean predicted class probabilities of the classifiers
        in the ensemble.

        This generator method yields the ensemble predicted class probabilities
        after each iteration of boosting and therefore allows monitoring, such
        as to determine the predicted class probabilities on a test set after
        each boost.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        p : generator of array, shape = [n_samples]
            The class probabilities of the input samples. The order of
            outputs is the same of that of the `classes_` attribute.
        """
        X = self._validate_X_predict(X)

        n_classes = self.n_classes_
        proba = None
        norm = 0.

        for weight, estimator in zip(self.estimator_weights_,
                                     self.estimators_):
            norm += weight

            if self.algorithm == 'SAMME.R':
                # The weights are all 1. for SAMME.R
                current_proba = _samme_proba(estimator, n_classes, X)
            else:  # elif self.algorithm == "SAMME":
                current_proba = estimator.predict_proba(X) * weight

            if proba is None:
                proba = current_proba
            else:
                proba += current_proba

            real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm))
            normalizer = real_proba.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            real_proba /= normalizer

            yield real_proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the weighted mean predicted class log-probabilities of the classifiers
        in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        p : array of shape = [n_samples, n_classes]
            The class probabilities of the input samples. The order of
            outputs is the same of that of the `classes_` attribute.
        """
        return np.log(self.predict_proba(X))


class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin):
    """An AdaBoost regressor.

    An AdaBoost [1] regressor is a meta-estimator that begins by fitting a
    regressor on the original dataset and then fits additional copies of the
    regressor on the same dataset but where the weights of instances are
    adjusted according to the error of the current prediction. As such,
    subsequent regressors focus more on difficult cases.

    This class implements the algorithm known as AdaBoost.R2 [2].

    Read more in the :ref:`User Guide <adaboost>`.

    Parameters
    ----------
    base_estimator : object, optional (default=None)
        The base estimator from which the boosted ensemble is built.
        Support for sample weighting is required. If ``None``, then
        the base estimator is ``DecisionTreeRegressor(max_depth=3)``

    n_estimators : integer, optional (default=50)
        The maximum number of estimators at which boosting is terminated.
        In case of perfect fit, the learning procedure is stopped early.

    learning_rate : float, optional (default=1.)
        Learning rate shrinks the contribution of each regressor by
        ``learning_rate``. There is a trade-off between ``learning_rate`` and
        ``n_estimators``.

    loss : {'linear', 'square', 'exponential'}, optional (default='linear')
        The loss function to use when updating the weights after each
        boosting iteration.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    estimators_ : list of classifiers
        The collection of fitted sub-estimators.

    estimator_weights_ : array of floats
        Weights for each estimator in the boosted ensemble.

    estimator_errors_ : array of floats
        Regression error for each estimator in the boosted ensemble.

    feature_importances_ : array of shape = [n_features]
        The feature importances if supported by the ``base_estimator``.

    See also
    --------
    AdaBoostClassifier, GradientBoostingRegressor,
    sklearn.tree.DecisionTreeRegressor

    References
    ----------
    .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
           on-Line Learning and an Application to Boosting", 1995.

    .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997.

    """
    def __init__(self,
                 base_estimator=None,
                 n_estimators=50,
                 learning_rate=1.,
                 loss='linear',
                 random_state=None):

        super(AdaBoostRegressor, self).__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            learning_rate=learning_rate,
            random_state=random_state)

        self.loss = loss
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        """Build a boosted regressor from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        y : array-like of shape = [n_samples]
            The target values (real numbers).

        sample_weight : array-like of shape = [n_samples], optional
            Sample weights. If None, the sample weights are initialized to
            1 / n_samples.

        Returns
        -------
        self : object
        """
        # Check loss
        if self.loss not in ('linear', 'square', 'exponential'):
            raise ValueError(
                "loss must be 'linear', 'square', or 'exponential'")

        # Fit
        return super(AdaBoostRegressor, self).fit(X, y, sample_weight)

    def _validate_estimator(self):
        """Check the estimator and set the base_estimator_ attribute."""
        super(AdaBoostRegressor, self)._validate_estimator(
            default=DecisionTreeRegressor(max_depth=3))

    def _boost(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost for regression

        Perform a single boost according to the AdaBoost.R2 algorithm and
        return the updated sample weights.

        Parameters
        ----------
        iboost : int
            The index of the current boost iteration.

        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        y : array-like of shape = [n_samples]
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape = [n_samples]
            The current sample weights.

        random_state : RandomState
            The current random number generator

        Returns
        -------
        sample_weight : array-like of shape = [n_samples] or None
            The reweighted sample weights.
            If None then boosting has terminated early.

        estimator_weight : float
            The weight for the current boost.
            If None then boosting has terminated early.

        estimator_error : float
            The regression error for the current boost.
            If None then boosting has terminated early.
        """
        estimator = self._make_estimator(random_state=random_state)

        # Weighted sampling of the training set with replacement
        # For NumPy >= 1.7.0 use np.random.choice
        cdf = stable_cumsum(sample_weight)
        cdf /= cdf[-1]
        uniform_samples = random_state.random_sample(X.shape[0])
        bootstrap_idx = cdf.searchsorted(uniform_samples, side='right')
        # searchsorted returns a scalar
        bootstrap_idx = np.array(bootstrap_idx, copy=False)

        # Fit on the bootstrapped sample and obtain a prediction
        # for all samples in the training set
        estimator.fit(X[bootstrap_idx], y[bootstrap_idx])
        y_predict = estimator.predict(X)

        error_vect = np.abs(y_predict - y)
        error_max = error_vect.max()

        if error_max != 0.:
            error_vect /= error_max

        if self.loss == 'square':
            error_vect **= 2
        elif self.loss == 'exponential':
            error_vect = 1. - np.exp(- error_vect)

        # Calculate the average loss
        estimator_error = (sample_weight * error_vect).sum()

        if estimator_error <= 0:
            # Stop if fit is perfect
            return sample_weight, 1., 0.

        elif estimator_error >= 0.5:
            # Discard current estimator only if it isn't the only one
            if len(self.estimators_) > 1:
                self.estimators_.pop(-1)
            return None, None, None

        beta = estimator_error / (1. - estimator_error)

        # Boost weight using AdaBoost.R2 alg
        estimator_weight = self.learning_rate * np.log(1. / beta)

        if not iboost == self.n_estimators - 1:
            sample_weight *= np.power(
                beta,
                (1. - error_vect) * self.learning_rate)

        return sample_weight, estimator_weight, estimator_error

    def _get_median_predict(self, X, limit):
        # Evaluate predictions of all estimators
        predictions = np.array([
            est.predict(X) for est in self.estimators_[:limit]]).T

        # Sort the predictions
        sorted_idx = np.argsort(predictions, axis=1)

        # Find index of median prediction for each sample
        weight_cdf = stable_cumsum(self.estimator_weights_[sorted_idx], axis=1)
        median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis]
        median_idx = median_or_above.argmax(axis=1)

        median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx]

        # Return median predictions
        return predictions[np.arange(X.shape[0]), median_estimators]

    def predict(self, X):
        """Predict regression value for X.

        The predicted regression value of an input sample is computed
        as the weighted median prediction of the classifiers in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        y : array of shape = [n_samples]
            The predicted regression values.
        """
        check_is_fitted(self, "estimator_weights_")
        X = self._validate_X_predict(X)

        return self._get_median_predict(X, len(self.estimators_))

    def staged_predict(self, X):
        """Return staged predictions for X.

        The predicted regression value of an input sample is computed
        as the weighted median prediction of the classifiers in the ensemble.

        This generator method yields the ensemble prediction after each
        iteration of boosting and therefore allows monitoring, such as to
        determine the prediction on a test set after each boost.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. DOK and LIL are converted to CSR.

        Returns
        -------
        y : generator of array, shape = [n_samples]
            The predicted regression values.
        """
        check_is_fitted(self, "estimator_weights_")
        X = self._validate_X_predict(X)

        for i, _ in enumerate(self.estimators_, 1):
            yield self._get_median_predict(X, limit=i)