File: dict_vectorizer.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (365 lines) | stat: -rw-r--r-- 12,539 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Authors: Lars Buitinck
#          Dan Blanchard <dblanchard@ets.org>
# License: BSD 3 clause

from array import array
from operator import itemgetter

import numpy as np
import scipy.sparse as sp

from ..base import BaseEstimator, TransformerMixin
from ..externals import six
from ..externals.six.moves import xrange
from ..utils import check_array, tosequence
from ..utils.fixes import _Mapping as Mapping


def _tosequence(X):
    """Turn X into a sequence or ndarray, avoiding a copy if possible."""
    if isinstance(X, Mapping):  # single sample
        return [X]
    else:
        return tosequence(X)


class DictVectorizer(BaseEstimator, TransformerMixin):
    """Transforms lists of feature-value mappings to vectors.

    This transformer turns lists of mappings (dict-like objects) of feature
    names to feature values into Numpy arrays or scipy.sparse matrices for use
    with scikit-learn estimators.

    When feature values are strings, this transformer will do a binary one-hot
    (aka one-of-K) coding: one boolean-valued feature is constructed for each
    of the possible string values that the feature can take on. For instance,
    a feature "f" that can take on the values "ham" and "spam" will become two
    features in the output, one signifying "f=ham", the other "f=spam".

    However, note that this transformer will only do a binary one-hot encoding
    when feature values are of type string. If categorical features are
    represented as numeric values such as int, the DictVectorizer can be
    followed by :class:`sklearn.preprocessing.OneHotEncoder` to complete
    binary one-hot encoding.

    Features that do not occur in a sample (mapping) will have a zero value
    in the resulting array/matrix.

    Read more in the :ref:`User Guide <dict_feature_extraction>`.

    Parameters
    ----------
    dtype : callable, optional
        The type of feature values. Passed to Numpy array/scipy.sparse matrix
        constructors as the dtype argument.
    separator : string, optional
        Separator string used when constructing new features for one-hot
        coding.
    sparse : boolean, optional.
        Whether transform should produce scipy.sparse matrices.
        True by default.
    sort : boolean, optional.
        Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting.
        True by default.

    Attributes
    ----------
    vocabulary_ : dict
        A dictionary mapping feature names to feature indices.

    feature_names_ : list
        A list of length n_features containing the feature names (e.g., "f=ham"
        and "f=spam").

    Examples
    --------
    >>> from sklearn.feature_extraction import DictVectorizer
    >>> v = DictVectorizer(sparse=False)
    >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
    >>> X = v.fit_transform(D)
    >>> X
    array([[2., 0., 1.],
           [0., 1., 3.]])
    >>> v.inverse_transform(X) == \
        [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
    True
    >>> v.transform({'foo': 4, 'unseen_feature': 3})
    array([[0., 0., 4.]])

    See also
    --------
    FeatureHasher : performs vectorization using only a hash function.
    sklearn.preprocessing.OrdinalEncoder : handles nominal/categorical
      features encoded as columns of arbitrary data types.
    """

    def __init__(self, dtype=np.float64, separator="=", sparse=True,
                 sort=True):
        self.dtype = dtype
        self.separator = separator
        self.sparse = sparse
        self.sort = sort

    def fit(self, X, y=None):
        """Learn a list of feature name -> indices mappings.

        Parameters
        ----------
        X : Mapping or iterable over Mappings
            Dict(s) or Mapping(s) from feature names (arbitrary Python
            objects) to feature values (strings or convertible to dtype).
        y : (ignored)

        Returns
        -------
        self
        """
        feature_names = []
        vocab = {}

        for x in X:
            for f, v in six.iteritems(x):
                if isinstance(v, six.string_types):
                    f = "%s%s%s" % (f, self.separator, v)
                if f not in vocab:
                    feature_names.append(f)
                    vocab[f] = len(vocab)

        if self.sort:
            feature_names.sort()
            vocab = dict((f, i) for i, f in enumerate(feature_names))

        self.feature_names_ = feature_names
        self.vocabulary_ = vocab

        return self

    def _transform(self, X, fitting):
        # Sanity check: Python's array has no way of explicitly requesting the
        # signed 32-bit integers that scipy.sparse needs, so we use the next
        # best thing: typecode "i" (int). However, if that gives larger or
        # smaller integers than 32-bit ones, np.frombuffer screws up.
        assert array("i").itemsize == 4, (
            "sizeof(int) != 4 on your platform; please report this at"
            " https://github.com/scikit-learn/scikit-learn/issues and"
            " include the output from platform.platform() in your bug report")

        dtype = self.dtype
        if fitting:
            feature_names = []
            vocab = {}
        else:
            feature_names = self.feature_names_
            vocab = self.vocabulary_

        # Process everything as sparse regardless of setting
        X = [X] if isinstance(X, Mapping) else X

        indices = array("i")
        indptr = array("i", [0])
        # XXX we could change values to an array.array as well, but it
        # would require (heuristic) conversion of dtype to typecode...
        values = []

        # collect all the possible feature names and build sparse matrix at
        # same time
        for x in X:
            for f, v in six.iteritems(x):
                if isinstance(v, six.string_types):
                    f = "%s%s%s" % (f, self.separator, v)
                    v = 1
                if f in vocab:
                    indices.append(vocab[f])
                    values.append(dtype(v))
                else:
                    if fitting:
                        feature_names.append(f)
                        vocab[f] = len(vocab)
                        indices.append(vocab[f])
                        values.append(dtype(v))

            indptr.append(len(indices))

        if len(indptr) == 1:
            raise ValueError("Sample sequence X is empty.")

        indices = np.frombuffer(indices, dtype=np.intc)
        indptr = np.frombuffer(indptr, dtype=np.intc)
        shape = (len(indptr) - 1, len(vocab))

        result_matrix = sp.csr_matrix((values, indices, indptr),
                                      shape=shape, dtype=dtype)

        # Sort everything if asked
        if fitting and self.sort:
            feature_names.sort()
            map_index = np.empty(len(feature_names), dtype=np.int32)
            for new_val, f in enumerate(feature_names):
                map_index[new_val] = vocab[f]
                vocab[f] = new_val
            result_matrix = result_matrix[:, map_index]

        if self.sparse:
            result_matrix.sort_indices()
        else:
            result_matrix = result_matrix.toarray()

        if fitting:
            self.feature_names_ = feature_names
            self.vocabulary_ = vocab

        return result_matrix

    def fit_transform(self, X, y=None):
        """Learn a list of feature name -> indices mappings and transform X.

        Like fit(X) followed by transform(X), but does not require
        materializing X in memory.

        Parameters
        ----------
        X : Mapping or iterable over Mappings
            Dict(s) or Mapping(s) from feature names (arbitrary Python
            objects) to feature values (strings or convertible to dtype).
        y : (ignored)

        Returns
        -------
        Xa : {array, sparse matrix}
            Feature vectors; always 2-d.
        """
        return self._transform(X, fitting=True)

    def inverse_transform(self, X, dict_type=dict):
        """Transform array or sparse matrix X back to feature mappings.

        X must have been produced by this DictVectorizer's transform or
        fit_transform method; it may only have passed through transformers
        that preserve the number of features and their order.

        In the case of one-hot/one-of-K coding, the constructed feature
        names and values are returned rather than the original ones.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Sample matrix.
        dict_type : callable, optional
            Constructor for feature mappings. Must conform to the
            collections.Mapping API.

        Returns
        -------
        D : list of dict_type objects, length = n_samples
            Feature mappings for the samples in X.
        """
        # COO matrix is not subscriptable
        X = check_array(X, accept_sparse=['csr', 'csc'])
        n_samples = X.shape[0]

        names = self.feature_names_
        dicts = [dict_type() for _ in xrange(n_samples)]

        if sp.issparse(X):
            for i, j in zip(*X.nonzero()):
                dicts[i][names[j]] = X[i, j]
        else:
            for i, d in enumerate(dicts):
                for j, v in enumerate(X[i, :]):
                    if v != 0:
                        d[names[j]] = X[i, j]

        return dicts

    def transform(self, X):
        """Transform feature->value dicts to array or sparse matrix.

        Named features not encountered during fit or fit_transform will be
        silently ignored.

        Parameters
        ----------
        X : Mapping or iterable over Mappings, length = n_samples
            Dict(s) or Mapping(s) from feature names (arbitrary Python
            objects) to feature values (strings or convertible to dtype).

        Returns
        -------
        Xa : {array, sparse matrix}
            Feature vectors; always 2-d.
        """
        if self.sparse:
            return self._transform(X, fitting=False)

        else:
            dtype = self.dtype
            vocab = self.vocabulary_
            X = _tosequence(X)
            Xa = np.zeros((len(X), len(vocab)), dtype=dtype)

            for i, x in enumerate(X):
                for f, v in six.iteritems(x):
                    if isinstance(v, six.string_types):
                        f = "%s%s%s" % (f, self.separator, v)
                        v = 1
                    try:
                        Xa[i, vocab[f]] = dtype(v)
                    except KeyError:
                        pass

            return Xa

    def get_feature_names(self):
        """Returns a list of feature names, ordered by their indices.

        If one-of-K coding is applied to categorical features, this will
        include the constructed feature names but not the original ones.
        """
        return self.feature_names_

    def restrict(self, support, indices=False):
        """Restrict the features to those in support using feature selection.

        This function modifies the estimator in-place.

        Parameters
        ----------
        support : array-like
            Boolean mask or list of indices (as returned by the get_support
            member of feature selectors).
        indices : boolean, optional
            Whether support is a list of indices.

        Returns
        -------
        self

        Examples
        --------
        >>> from sklearn.feature_extraction import DictVectorizer
        >>> from sklearn.feature_selection import SelectKBest, chi2
        >>> v = DictVectorizer()
        >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
        >>> X = v.fit_transform(D)
        >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1])
        >>> v.get_feature_names()
        ['bar', 'baz', 'foo']
        >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS
        DictVectorizer(dtype=..., separator='=', sort=True,
                sparse=True)
        >>> v.get_feature_names()
        ['bar', 'foo']
        """
        if not indices:
            support = np.where(support)[0]

        names = self.feature_names_
        new_vocab = {}
        for i in support:
            new_vocab[names[i]] = len(new_vocab)

        self.vocabulary_ = new_vocab
        self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab),
                                                    key=itemgetter(1))]

        return self