1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
from __future__ import unicode_literals
import numpy as np
from numpy.testing import assert_array_equal
from sklearn.feature_extraction import FeatureHasher
from sklearn.utils.testing import (assert_raises, assert_equal,
ignore_warnings, fails_if_pypy)
pytestmark = fails_if_pypy
def test_feature_hasher_dicts():
h = FeatureHasher(n_features=16)
assert_equal("dict", h.input_type)
raw_X = [{"foo": "bar", "dada": 42, "tzara": 37},
{"foo": "baz", "gaga": u"string1"}]
X1 = FeatureHasher(n_features=16).transform(raw_X)
gen = (iter(d.items()) for d in raw_X)
X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen)
assert_array_equal(X1.toarray(), X2.toarray())
@ignore_warnings(category=DeprecationWarning)
def test_feature_hasher_strings():
# mix byte and Unicode strings; note that "foo" is a duplicate in row 0
raw_X = [["foo", "bar", "baz", "foo".encode("ascii")],
["bar".encode("ascii"), "baz", "quux"]]
for lg_n_features in (7, 9, 11, 16, 22):
n_features = 2 ** lg_n_features
it = (x for x in raw_X) # iterable
h = FeatureHasher(n_features, non_negative=True, input_type="string")
X = h.transform(it)
assert_equal(X.shape[0], len(raw_X))
assert_equal(X.shape[1], n_features)
assert np.all(X.data > 0)
assert_equal(X[0].sum(), 4)
assert_equal(X[1].sum(), 3)
assert_equal(X.nnz, 6)
def test_feature_hasher_pairs():
raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2},
{"baz": 3, "quux": 4, "foo": -1}])
h = FeatureHasher(n_features=16, input_type="pair")
x1, x2 = h.transform(raw_X).toarray()
x1_nz = sorted(np.abs(x1[x1 != 0]))
x2_nz = sorted(np.abs(x2[x2 != 0]))
assert_equal([1, 2], x1_nz)
assert_equal([1, 3, 4], x2_nz)
def test_feature_hasher_pairs_with_string_values():
raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": "a"},
{"baz": u"abc", "quux": 4, "foo": -1}])
h = FeatureHasher(n_features=16, input_type="pair")
x1, x2 = h.transform(raw_X).toarray()
x1_nz = sorted(np.abs(x1[x1 != 0]))
x2_nz = sorted(np.abs(x2[x2 != 0]))
assert_equal([1, 1], x1_nz)
assert_equal([1, 1, 4], x2_nz)
raw_X = (iter(d.items()) for d in [{"bax": "abc"},
{"bax": "abc"}])
x1, x2 = h.transform(raw_X).toarray()
x1_nz = np.abs(x1[x1 != 0])
x2_nz = np.abs(x2[x2 != 0])
assert_equal([1], x1_nz)
assert_equal([1], x2_nz)
assert_array_equal(x1, x2)
def test_hash_empty_input():
n_features = 16
raw_X = [[], (), iter(range(0))]
h = FeatureHasher(n_features=n_features, input_type="string")
X = h.transform(raw_X)
assert_array_equal(X.A, np.zeros((len(raw_X), n_features)))
def test_hasher_invalid_input():
assert_raises(ValueError, FeatureHasher, input_type="gobbledygook")
assert_raises(ValueError, FeatureHasher, n_features=-1)
assert_raises(ValueError, FeatureHasher, n_features=0)
assert_raises(TypeError, FeatureHasher, n_features='ham')
h = FeatureHasher(n_features=np.uint16(2 ** 6))
assert_raises(ValueError, h.transform, [])
assert_raises(Exception, h.transform, [[5.5]])
assert_raises(Exception, h.transform, [[None]])
def test_hasher_set_params():
# Test delayed input validation in fit (useful for grid search).
hasher = FeatureHasher()
hasher.set_params(n_features=np.inf)
assert_raises(TypeError, hasher.fit)
def test_hasher_zeros():
# Assert that no zeros are materialized in the output.
X = FeatureHasher().transform([{'foo': 0}])
assert_equal(X.data.shape, (0,))
@ignore_warnings(category=DeprecationWarning)
def test_hasher_alternate_sign():
X = [list("Thequickbrownfoxjumped")]
Xt = FeatureHasher(alternate_sign=True, non_negative=False,
input_type='string').fit_transform(X)
assert Xt.data.min() < 0 and Xt.data.max() > 0
Xt = FeatureHasher(alternate_sign=True, non_negative=True,
input_type='string').fit_transform(X)
assert Xt.data.min() > 0
Xt = FeatureHasher(alternate_sign=False, non_negative=True,
input_type='string').fit_transform(X)
assert Xt.data.min() > 0
Xt_2 = FeatureHasher(alternate_sign=False, non_negative=False,
input_type='string').fit_transform(X)
# With initially positive features, the non_negative option should
# have no impact when alternate_sign=False
assert_array_equal(Xt.data, Xt_2.data)
@ignore_warnings(category=DeprecationWarning)
def test_hash_collisions():
X = [list("Thequickbrownfoxjumped")]
Xt = FeatureHasher(alternate_sign=True, non_negative=False,
n_features=1, input_type='string').fit_transform(X)
# check that some of the hashed tokens are added
# with an opposite sign and cancel out
assert abs(Xt.data[0]) < len(X[0])
Xt = FeatureHasher(alternate_sign=True, non_negative=True,
n_features=1, input_type='string').fit_transform(X)
assert abs(Xt.data[0]) < len(X[0])
Xt = FeatureHasher(alternate_sign=False, non_negative=True,
n_features=1, input_type='string').fit_transform(X)
assert Xt.data[0] == len(X[0])
@ignore_warnings(category=DeprecationWarning)
def test_hasher_negative():
X = [{"foo": 2, "bar": -4, "baz": -1}.items()]
Xt = FeatureHasher(alternate_sign=False, non_negative=False,
input_type="pair").fit_transform(X)
assert Xt.data.min() < 0 and Xt.data.max() > 0
Xt = FeatureHasher(alternate_sign=False, non_negative=True,
input_type="pair").fit_transform(X)
assert Xt.data.min() > 0
Xt = FeatureHasher(alternate_sign=True, non_negative=False,
input_type="pair").fit_transform(X)
assert Xt.data.min() < 0 and Xt.data.max() > 0
Xt = FeatureHasher(alternate_sign=True, non_negative=True,
input_type="pair").fit_transform(X)
assert Xt.data.min() > 0
|