1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
"""Univariate features selection."""
# Authors: V. Michel, B. Thirion, G. Varoquaux, A. Gramfort, E. Duchesnay.
# L. Buitinck, A. Joly
# License: BSD 3 clause
import numpy as np
import warnings
from scipy import special, stats
from scipy.sparse import issparse
from ..base import BaseEstimator
from ..preprocessing import LabelBinarizer
from ..utils import (as_float_array, check_array, check_X_y, safe_sqr,
safe_mask)
from ..utils.extmath import safe_sparse_dot, row_norms
from ..utils.validation import check_is_fitted
from .base import SelectorMixin
def _clean_nans(scores):
"""
Fixes Issue #1240: NaNs can't be properly compared, so change them to the
smallest value of scores's dtype. -inf seems to be unreliable.
"""
# XXX where should this function be called? fit? scoring functions
# themselves?
scores = as_float_array(scores, copy=True)
scores[np.isnan(scores)] = np.finfo(scores.dtype).min
return scores
######################################################################
# Scoring functions
# The following function is a rewriting of scipy.stats.f_oneway
# Contrary to the scipy.stats.f_oneway implementation it does not
# copy the data while keeping the inputs unchanged.
def f_oneway(*args):
"""Performs a 1-way ANOVA.
The one-way ANOVA tests the null hypothesis that 2 or more groups have
the same population mean. The test is applied to samples from two or
more groups, possibly with differing sizes.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
*args : array_like, sparse matrices
sample1, sample2... The sample measurements should be given as
arguments.
Returns
-------
F-value : float
The computed F-value of the test.
p-value : float
The associated p-value from the F-distribution.
Notes
-----
The ANOVA test has important assumptions that must be satisfied in order
for the associated p-value to be valid.
1. The samples are independent
2. Each sample is from a normally distributed population
3. The population standard deviations of the groups are all equal. This
property is known as homoscedasticity.
If these assumptions are not true for a given set of data, it may still be
possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`_) although
with some loss of power.
The algorithm is from Heiman[2], pp.394-7.
See ``scipy.stats.f_oneway`` that should give the same results while
being less efficient.
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 14.
http://faculty.vassar.edu/lowry/ch14pt1.html
.. [2] Heiman, G.W. Research Methods in Statistics. 2002.
"""
n_classes = len(args)
args = [as_float_array(a) for a in args]
n_samples_per_class = np.array([a.shape[0] for a in args])
n_samples = np.sum(n_samples_per_class)
ss_alldata = sum(safe_sqr(a).sum(axis=0) for a in args)
sums_args = [np.asarray(a.sum(axis=0)) for a in args]
square_of_sums_alldata = sum(sums_args) ** 2
square_of_sums_args = [s ** 2 for s in sums_args]
sstot = ss_alldata - square_of_sums_alldata / float(n_samples)
ssbn = 0.
for k, _ in enumerate(args):
ssbn += square_of_sums_args[k] / n_samples_per_class[k]
ssbn -= square_of_sums_alldata / float(n_samples)
sswn = sstot - ssbn
dfbn = n_classes - 1
dfwn = n_samples - n_classes
msb = ssbn / float(dfbn)
msw = sswn / float(dfwn)
constant_features_idx = np.where(msw == 0.)[0]
if (np.nonzero(msb)[0].size != msb.size and constant_features_idx.size):
warnings.warn("Features %s are constant." % constant_features_idx,
UserWarning)
f = msb / msw
# flatten matrix to vector in sparse case
f = np.asarray(f).ravel()
prob = special.fdtrc(dfbn, dfwn, f)
return f, prob
def f_classif(X, y):
"""Compute the ANOVA F-value for the provided sample.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
X : {array-like, sparse matrix} shape = [n_samples, n_features]
The set of regressors that will be tested sequentially.
y : array of shape(n_samples)
The data matrix.
Returns
-------
F : array, shape = [n_features,]
The set of F values.
pval : array, shape = [n_features,]
The set of p-values.
See also
--------
chi2: Chi-squared stats of non-negative features for classification tasks.
f_regression: F-value between label/feature for regression tasks.
"""
X, y = check_X_y(X, y, ['csr', 'csc', 'coo'])
args = [X[safe_mask(X, y == k)] for k in np.unique(y)]
return f_oneway(*args)
def _chisquare(f_obs, f_exp):
"""Fast replacement for scipy.stats.chisquare.
Version from https://github.com/scipy/scipy/pull/2525 with additional
optimizations.
"""
f_obs = np.asarray(f_obs, dtype=np.float64)
k = len(f_obs)
# Reuse f_obs for chi-squared statistics
chisq = f_obs
chisq -= f_exp
chisq **= 2
with np.errstate(invalid="ignore"):
chisq /= f_exp
chisq = chisq.sum(axis=0)
return chisq, special.chdtrc(k - 1, chisq)
def chi2(X, y):
"""Compute chi-squared stats between each non-negative feature and class.
This score can be used to select the n_features features with the
highest values for the test chi-squared statistic from X, which must
contain only non-negative features such as booleans or frequencies
(e.g., term counts in document classification), relative to the classes.
Recall that the chi-square test measures dependence between stochastic
variables, so using this function "weeds out" the features that are the
most likely to be independent of class and therefore irrelevant for
classification.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
X : {array-like, sparse matrix}, shape = (n_samples, n_features_in)
Sample vectors.
y : array-like, shape = (n_samples,)
Target vector (class labels).
Returns
-------
chi2 : array, shape = (n_features,)
chi2 statistics of each feature.
pval : array, shape = (n_features,)
p-values of each feature.
Notes
-----
Complexity of this algorithm is O(n_classes * n_features).
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
f_regression: F-value between label/feature for regression tasks.
"""
# XXX: we might want to do some of the following in logspace instead for
# numerical stability.
X = check_array(X, accept_sparse='csr')
if np.any((X.data if issparse(X) else X) < 0):
raise ValueError("Input X must be non-negative.")
Y = LabelBinarizer().fit_transform(y)
if Y.shape[1] == 1:
Y = np.append(1 - Y, Y, axis=1)
observed = safe_sparse_dot(Y.T, X) # n_classes * n_features
feature_count = X.sum(axis=0).reshape(1, -1)
class_prob = Y.mean(axis=0).reshape(1, -1)
expected = np.dot(class_prob.T, feature_count)
return _chisquare(observed, expected)
def f_regression(X, y, center=True):
"""Univariate linear regression tests.
Linear model for testing the individual effect of each of many regressors.
This is a scoring function to be used in a feature selection procedure, not
a free standing feature selection procedure.
This is done in 2 steps:
1. The correlation between each regressor and the target is computed,
that is, ((X[:, i] - mean(X[:, i])) * (y - mean_y)) / (std(X[:, i]) *
std(y)).
2. It is converted to an F score then to a p-value.
For more on usage see the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
X : {array-like, sparse matrix} shape = (n_samples, n_features)
The set of regressors that will be tested sequentially.
y : array of shape(n_samples).
The data matrix
center : True, bool,
If true, X and y will be centered.
Returns
-------
F : array, shape=(n_features,)
F values of features.
pval : array, shape=(n_features,)
p-values of F-scores.
See also
--------
mutual_info_regression: Mutual information for a continuous target.
f_classif: ANOVA F-value between label/feature for classification tasks.
chi2: Chi-squared stats of non-negative features for classification tasks.
SelectKBest: Select features based on the k highest scores.
SelectFpr: Select features based on a false positive rate test.
SelectFdr: Select features based on an estimated false discovery rate.
SelectFwe: Select features based on family-wise error rate.
SelectPercentile: Select features based on percentile of the highest
scores.
"""
X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64)
n_samples = X.shape[0]
# compute centered values
# note that E[(x - mean(x))*(y - mean(y))] = E[x*(y - mean(y))], so we
# need not center X
if center:
y = y - np.mean(y)
if issparse(X):
X_means = X.mean(axis=0).getA1()
else:
X_means = X.mean(axis=0)
# compute the scaled standard deviations via moments
X_norms = np.sqrt(row_norms(X.T, squared=True) -
n_samples * X_means ** 2)
else:
X_norms = row_norms(X.T)
# compute the correlation
corr = safe_sparse_dot(y, X)
corr /= X_norms
corr /= np.linalg.norm(y)
# convert to p-value
degrees_of_freedom = y.size - (2 if center else 1)
F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom
pv = stats.f.sf(F, 1, degrees_of_freedom)
return F, pv
######################################################################
# Base classes
class _BaseFilter(BaseEstimator, SelectorMixin):
"""Initialize the univariate feature selection.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues) or a single array with scores.
"""
def __init__(self, score_func):
self.score_func = score_func
def fit(self, X, y):
"""Run score function on (X, y) and get the appropriate features.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
The training input samples.
y : array-like, shape = [n_samples]
The target values (class labels in classification, real numbers in
regression).
Returns
-------
self : object
"""
X, y = check_X_y(X, y, ['csr', 'csc'], multi_output=True)
if not callable(self.score_func):
raise TypeError("The score function should be a callable, %s (%s) "
"was passed."
% (self.score_func, type(self.score_func)))
self._check_params(X, y)
score_func_ret = self.score_func(X, y)
if isinstance(score_func_ret, (list, tuple)):
self.scores_, self.pvalues_ = score_func_ret
self.pvalues_ = np.asarray(self.pvalues_)
else:
self.scores_ = score_func_ret
self.pvalues_ = None
self.scores_ = np.asarray(self.scores_)
return self
def _check_params(self, X, y):
pass
######################################################################
# Specific filters
######################################################################
class SelectPercentile(_BaseFilter):
"""Select features according to a percentile of the highest scores.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues) or a single array with scores.
Default is f_classif (see below "See also"). The default function only
works with classification tasks.
percentile : int, optional, default=10
Percent of features to keep.
Attributes
----------
scores_ : array-like, shape=(n_features,)
Scores of features.
pvalues_ : array-like, shape=(n_features,)
p-values of feature scores, None if `score_func` returned only scores.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.feature_selection import SelectPercentile, chi2
>>> X, y = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> X_new = SelectPercentile(chi2, percentile=10).fit_transform(X, y)
>>> X_new.shape
(1797, 7)
Notes
-----
Ties between features with equal scores will be broken in an unspecified
way.
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
mutual_info_classif: Mutual information for a discrete target.
chi2: Chi-squared stats of non-negative features for classification tasks.
f_regression: F-value between label/feature for regression tasks.
mutual_info_regression: Mutual information for a continuous target.
SelectKBest: Select features based on the k highest scores.
SelectFpr: Select features based on a false positive rate test.
SelectFdr: Select features based on an estimated false discovery rate.
SelectFwe: Select features based on family-wise error rate.
GenericUnivariateSelect: Univariate feature selector with configurable mode.
"""
def __init__(self, score_func=f_classif, percentile=10):
super(SelectPercentile, self).__init__(score_func)
self.percentile = percentile
def _check_params(self, X, y):
if not 0 <= self.percentile <= 100:
raise ValueError("percentile should be >=0, <=100; got %r"
% self.percentile)
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
# Cater for NaNs
if self.percentile == 100:
return np.ones(len(self.scores_), dtype=np.bool)
elif self.percentile == 0:
return np.zeros(len(self.scores_), dtype=np.bool)
scores = _clean_nans(self.scores_)
threshold = np.percentile(scores, 100 - self.percentile)
mask = scores > threshold
ties = np.where(scores == threshold)[0]
if len(ties):
max_feats = int(len(scores) * self.percentile / 100)
kept_ties = ties[:max_feats - mask.sum()]
mask[kept_ties] = True
return mask
class SelectKBest(_BaseFilter):
"""Select features according to the k highest scores.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues) or a single array with scores.
Default is f_classif (see below "See also"). The default function only
works with classification tasks.
k : int or "all", optional, default=10
Number of top features to select.
The "all" option bypasses selection, for use in a parameter search.
Attributes
----------
scores_ : array-like, shape=(n_features,)
Scores of features.
pvalues_ : array-like, shape=(n_features,)
p-values of feature scores, None if `score_func` returned only scores.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> X, y = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> X_new = SelectKBest(chi2, k=20).fit_transform(X, y)
>>> X_new.shape
(1797, 20)
Notes
-----
Ties between features with equal scores will be broken in an unspecified
way.
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
mutual_info_classif: Mutual information for a discrete target.
chi2: Chi-squared stats of non-negative features for classification tasks.
f_regression: F-value between label/feature for regression tasks.
mutual_info_regression: Mutual information for a continuous target.
SelectPercentile: Select features based on percentile of the highest scores.
SelectFpr: Select features based on a false positive rate test.
SelectFdr: Select features based on an estimated false discovery rate.
SelectFwe: Select features based on family-wise error rate.
GenericUnivariateSelect: Univariate feature selector with configurable mode.
"""
def __init__(self, score_func=f_classif, k=10):
super(SelectKBest, self).__init__(score_func)
self.k = k
def _check_params(self, X, y):
if not (self.k == "all" or 0 <= self.k <= X.shape[1]):
raise ValueError("k should be >=0, <= n_features = %d; got %r. "
"Use k='all' to return all features."
% (X.shape[1], self.k))
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
if self.k == 'all':
return np.ones(self.scores_.shape, dtype=bool)
elif self.k == 0:
return np.zeros(self.scores_.shape, dtype=bool)
else:
scores = _clean_nans(self.scores_)
mask = np.zeros(scores.shape, dtype=bool)
# Request a stable sort. Mergesort takes more memory (~40MB per
# megafeature on x86-64).
mask[np.argsort(scores, kind="mergesort")[-self.k:]] = 1
return mask
class SelectFpr(_BaseFilter):
"""Filter: Select the pvalues below alpha based on a FPR test.
FPR test stands for False Positive Rate test. It controls the total
amount of false detections.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues).
Default is f_classif (see below "See also"). The default function only
works with classification tasks.
alpha : float, optional
The highest p-value for features to be kept.
Attributes
----------
scores_ : array-like, shape=(n_features,)
Scores of features.
pvalues_ : array-like, shape=(n_features,)
p-values of feature scores.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import SelectFpr, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> X_new = SelectFpr(chi2, alpha=0.01).fit_transform(X, y)
>>> X_new.shape
(569, 16)
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
chi2: Chi-squared stats of non-negative features for classification tasks.
mutual_info_classif:
f_regression: F-value between label/feature for regression tasks.
mutual_info_regression: Mutual information between features and the target.
SelectPercentile: Select features based on percentile of the highest scores.
SelectKBest: Select features based on the k highest scores.
SelectFdr: Select features based on an estimated false discovery rate.
SelectFwe: Select features based on family-wise error rate.
GenericUnivariateSelect: Univariate feature selector with configurable mode.
"""
def __init__(self, score_func=f_classif, alpha=5e-2):
super(SelectFpr, self).__init__(score_func)
self.alpha = alpha
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
return self.pvalues_ < self.alpha
class SelectFdr(_BaseFilter):
"""Filter: Select the p-values for an estimated false discovery rate
This uses the Benjamini-Hochberg procedure. ``alpha`` is an upper bound
on the expected false discovery rate.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues).
Default is f_classif (see below "See also"). The default function only
works with classification tasks.
alpha : float, optional
The highest uncorrected p-value for features to keep.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import SelectFdr, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> X_new = SelectFdr(chi2, alpha=0.01).fit_transform(X, y)
>>> X_new.shape
(569, 16)
Attributes
----------
scores_ : array-like, shape=(n_features,)
Scores of features.
pvalues_ : array-like, shape=(n_features,)
p-values of feature scores.
References
----------
https://en.wikipedia.org/wiki/False_discovery_rate
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
mutual_info_classif: Mutual information for a discrete target.
chi2: Chi-squared stats of non-negative features for classification tasks.
f_regression: F-value between label/feature for regression tasks.
mutual_info_regression: Mutual information for a contnuous target.
SelectPercentile: Select features based on percentile of the highest scores.
SelectKBest: Select features based on the k highest scores.
SelectFpr: Select features based on a false positive rate test.
SelectFwe: Select features based on family-wise error rate.
GenericUnivariateSelect: Univariate feature selector with configurable mode.
"""
def __init__(self, score_func=f_classif, alpha=5e-2):
super(SelectFdr, self).__init__(score_func)
self.alpha = alpha
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
n_features = len(self.pvalues_)
sv = np.sort(self.pvalues_)
selected = sv[sv <= float(self.alpha) / n_features *
np.arange(1, n_features + 1)]
if selected.size == 0:
return np.zeros_like(self.pvalues_, dtype=bool)
return self.pvalues_ <= selected.max()
class SelectFwe(_BaseFilter):
"""Filter: Select the p-values corresponding to Family-wise error rate
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues).
Default is f_classif (see below "See also"). The default function only
works with classification tasks.
alpha : float, optional
The highest uncorrected p-value for features to keep.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import SelectFwe, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> X_new = SelectFwe(chi2, alpha=0.01).fit_transform(X, y)
>>> X_new.shape
(569, 15)
Attributes
----------
scores_ : array-like, shape=(n_features,)
Scores of features.
pvalues_ : array-like, shape=(n_features,)
p-values of feature scores.
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
chi2: Chi-squared stats of non-negative features for classification tasks.
f_regression: F-value between label/feature for regression tasks.
SelectPercentile: Select features based on percentile of the highest scores.
SelectKBest: Select features based on the k highest scores.
SelectFpr: Select features based on a false positive rate test.
SelectFdr: Select features based on an estimated false discovery rate.
GenericUnivariateSelect: Univariate feature selector with configurable mode.
"""
def __init__(self, score_func=f_classif, alpha=5e-2):
super(SelectFwe, self).__init__(score_func)
self.alpha = alpha
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
return (self.pvalues_ < self.alpha / len(self.pvalues_))
######################################################################
# Generic filter
######################################################################
# TODO this class should fit on either p-values or scores,
# depending on the mode.
class GenericUnivariateSelect(_BaseFilter):
"""Univariate feature selector with configurable strategy.
Read more in the :ref:`User Guide <univariate_feature_selection>`.
Parameters
----------
score_func : callable
Function taking two arrays X and y, and returning a pair of arrays
(scores, pvalues). For modes 'percentile' or 'kbest' it can return
a single array scores.
mode : {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}
Feature selection mode.
param : float or int depending on the feature selection mode
Parameter of the corresponding mode.
Attributes
----------
scores_ : array-like, shape=(n_features,)
Scores of features.
pvalues_ : array-like, shape=(n_features,)
p-values of feature scores, None if `score_func` returned scores only.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import GenericUnivariateSelect, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> transformer = GenericUnivariateSelect(chi2, 'k_best', param=20)
>>> X_new = transformer.fit_transform(X, y)
>>> X_new.shape
(569, 20)
See also
--------
f_classif: ANOVA F-value between label/feature for classification tasks.
mutual_info_classif: Mutual information for a discrete target.
chi2: Chi-squared stats of non-negative features for classification tasks.
f_regression: F-value between label/feature for regression tasks.
mutual_info_regression: Mutual information for a continuous target.
SelectPercentile: Select features based on percentile of the highest scores.
SelectKBest: Select features based on the k highest scores.
SelectFpr: Select features based on a false positive rate test.
SelectFdr: Select features based on an estimated false discovery rate.
SelectFwe: Select features based on family-wise error rate.
"""
_selection_modes = {'percentile': SelectPercentile,
'k_best': SelectKBest,
'fpr': SelectFpr,
'fdr': SelectFdr,
'fwe': SelectFwe}
def __init__(self, score_func=f_classif, mode='percentile', param=1e-5):
super(GenericUnivariateSelect, self).__init__(score_func)
self.mode = mode
self.param = param
def _make_selector(self):
selector = self._selection_modes[self.mode](score_func=self.score_func)
# Now perform some acrobatics to set the right named parameter in
# the selector
possible_params = selector._get_param_names()
possible_params.remove('score_func')
selector.set_params(**{possible_params[0]: self.param})
return selector
def _check_params(self, X, y):
if self.mode not in self._selection_modes:
raise ValueError("The mode passed should be one of %s, %r,"
" (type %s) was passed."
% (self._selection_modes.keys(), self.mode,
type(self.mode)))
self._make_selector()._check_params(X, y)
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
selector = self._make_selector()
selector.pvalues_ = self.pvalues_
selector.scores_ = self.scores_
return selector._get_support_mask()
|