1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
# -*- coding: utf-8 -*-
# Author: Vincent Dubourg <vincent.dubourg@gmail.com>
# (mostly translation, see implementation details)
# License: BSD 3 clause
"""
The built-in correlation models submodule for the gaussian_process module.
"""
import numpy as np
from ..utils import deprecated
@deprecated("The function absolute_exponential of correlation_models is "
"deprecated in version 0.19.1 and will be removed in 0.22.")
def absolute_exponential(theta, d):
"""
Absolute exponential autocorrelation model.
(Ornstein-Uhlenbeck stochastic process)::
n
theta, d --> r(theta, d) = exp( sum - theta_i * |d_i| )
i = 1
Parameters
----------
theta : array_like
An array with shape 1 (isotropic) or n (anisotropic) giving the
autocorrelation parameter(s).
d : array_like
An array with shape (n_eval, n_features) giving the componentwise
distances between locations x and x' at which the correlation model
should be evaluated.
Returns
-------
r : array_like
An array with shape (n_eval, ) containing the values of the
autocorrelation model.
"""
theta = np.asarray(theta, dtype=np.float64)
d = np.abs(np.asarray(d, dtype=np.float64))
if d.ndim > 1:
n_features = d.shape[1]
else:
n_features = 1
if theta.size == 1:
return np.exp(- theta[0] * np.sum(d, axis=1))
elif theta.size != n_features:
raise ValueError("Length of theta must be 1 or %s" % n_features)
else:
return np.exp(- np.sum(theta.reshape(1, n_features) * d, axis=1))
@deprecated("The function squared_exponential of correlation_models is "
"deprecated in version 0.19.1 and will be removed in 0.22.")
def squared_exponential(theta, d):
"""
Squared exponential correlation model (Radial Basis Function).
(Infinitely differentiable stochastic process, very smooth)::
n
theta, d --> r(theta, d) = exp( sum - theta_i * (d_i)^2 )
i = 1
Parameters
----------
theta : array_like
An array with shape 1 (isotropic) or n (anisotropic) giving the
autocorrelation parameter(s).
d : array_like
An array with shape (n_eval, n_features) giving the componentwise
distances between locations x and x' at which the correlation model
should be evaluated.
Returns
-------
r : array_like
An array with shape (n_eval, ) containing the values of the
autocorrelation model.
"""
theta = np.asarray(theta, dtype=np.float64)
d = np.asarray(d, dtype=np.float64)
if d.ndim > 1:
n_features = d.shape[1]
else:
n_features = 1
if theta.size == 1:
return np.exp(-theta[0] * np.sum(d ** 2, axis=1))
elif theta.size != n_features:
raise ValueError("Length of theta must be 1 or %s" % n_features)
else:
return np.exp(-np.sum(theta.reshape(1, n_features) * d ** 2, axis=1))
@deprecated("The function generalized_exponential of correlation_models is "
"deprecated in version 0.19.1 and will be removed in 0.22.")
def generalized_exponential(theta, d):
"""
Generalized exponential correlation model.
(Useful when one does not know the smoothness of the function to be
predicted.)::
n
theta, d --> r(theta, d) = exp( sum - theta_i * |d_i|^p )
i = 1
Parameters
----------
theta : array_like
An array with shape 1+1 (isotropic) or n+1 (anisotropic) giving the
autocorrelation parameter(s) (theta, p).
d : array_like
An array with shape (n_eval, n_features) giving the componentwise
distances between locations x and x' at which the correlation model
should be evaluated.
Returns
-------
r : array_like
An array with shape (n_eval, ) with the values of the autocorrelation
model.
"""
theta = np.asarray(theta, dtype=np.float64)
d = np.asarray(d, dtype=np.float64)
if d.ndim > 1:
n_features = d.shape[1]
else:
n_features = 1
lth = theta.size
if n_features > 1 and lth == 2:
theta = np.hstack([np.repeat(theta[0], n_features), theta[1]])
elif lth != n_features + 1:
raise Exception("Length of theta must be 2 or %s" % (n_features + 1))
else:
theta = theta.reshape(1, lth)
td = theta[:, 0:-1].reshape(1, n_features) * np.abs(d) ** theta[:, -1]
r = np.exp(- np.sum(td, 1))
return r
@deprecated("The function pure_nugget of correlation_models is "
"deprecated in version 0.19.1 and will be removed in 0.22.")
def pure_nugget(theta, d):
"""
Spatial independence correlation model (pure nugget).
(Useful when one wants to solve an ordinary least squares problem!)::
n
theta, d --> r(theta, d) = 1 if sum |d_i| == 0
i = 1
0 otherwise
Parameters
----------
theta : array_like
None.
d : array_like
An array with shape (n_eval, n_features) giving the componentwise
distances between locations x and x' at which the correlation model
should be evaluated.
Returns
-------
r : array_like
An array with shape (n_eval, ) with the values of the autocorrelation
model.
"""
theta = np.asarray(theta, dtype=np.float64)
d = np.asarray(d, dtype=np.float64)
n_eval = d.shape[0]
r = np.zeros(n_eval)
r[np.all(d == 0., axis=1)] = 1.
return r
@deprecated("The function cubic of correlation_models is "
"deprecated in version 0.19.1 and will be removed in 0.22.")
def cubic(theta, d):
"""
Cubic correlation model::
theta, d --> r(theta, d) =
n
prod max(0, 1 - 3(theta_j*d_ij)^2 + 2(theta_j*d_ij)^3) , i = 1,...,m
j = 1
Parameters
----------
theta : array_like
An array with shape 1 (isotropic) or n (anisotropic) giving the
autocorrelation parameter(s).
d : array_like
An array with shape (n_eval, n_features) giving the componentwise
distances between locations x and x' at which the correlation model
should be evaluated.
Returns
-------
r : array_like
An array with shape (n_eval, ) with the values of the autocorrelation
model.
"""
theta = np.asarray(theta, dtype=np.float64)
d = np.asarray(d, dtype=np.float64)
if d.ndim > 1:
n_features = d.shape[1]
else:
n_features = 1
lth = theta.size
if lth == 1:
td = np.abs(d) * theta
elif lth != n_features:
raise Exception("Length of theta must be 1 or " + str(n_features))
else:
td = np.abs(d) * theta.reshape(1, n_features)
np.clip(td, None, 1., out=td)
ss = 1. - td ** 2. * (3. - 2. * td)
r = np.prod(ss, 1)
return r
@deprecated("The function linear of correlation_models is "
"deprecated in version 0.19.1 and will be removed in 0.22.")
def linear(theta, d):
"""
Linear correlation model::
theta, d --> r(theta, d) =
n
prod max(0, 1 - theta_j*d_ij) , i = 1,...,m
j = 1
Parameters
----------
theta : array_like
An array with shape 1 (isotropic) or n (anisotropic) giving the
autocorrelation parameter(s).
d : array_like
An array with shape (n_eval, n_features) giving the componentwise
distances between locations x and x' at which the correlation model
should be evaluated.
Returns
-------
r : array_like
An array with shape (n_eval, ) with the values of the autocorrelation
model.
"""
theta = np.asarray(theta, dtype=np.float64)
d = np.asarray(d, dtype=np.float64)
if d.ndim > 1:
n_features = d.shape[1]
else:
n_features = 1
lth = theta.size
if lth == 1:
td = np.abs(d) * theta
elif lth != n_features:
raise Exception("Length of theta must be 1 or %s" % n_features)
else:
td = np.abs(d) * theta.reshape(1, n_features)
np.clip(td, None, 1., out=td)
ss = 1. - td
r = np.prod(ss, 1)
return r
|