1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
"""Gaussian processes classification."""
# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause
import warnings
from operator import itemgetter
import numpy as np
from scipy.linalg import cholesky, cho_solve, solve
from scipy.optimize import fmin_l_bfgs_b
from scipy.special import erf, expit
from sklearn.base import BaseEstimator, ClassifierMixin, clone
from sklearn.gaussian_process.kernels \
import RBF, CompoundKernel, ConstantKernel as C
from sklearn.utils.validation import check_X_y, check_is_fitted, check_array
from sklearn.utils import check_random_state
from sklearn.preprocessing import LabelEncoder
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
from sklearn.exceptions import ConvergenceWarning
# Values required for approximating the logistic sigmoid by
# error functions. coefs are obtained via:
# x = np.array([0, 0.6, 2, 3.5, 4.5, np.inf])
# b = logistic(x)
# A = (erf(np.dot(x, self.lambdas)) + 1) / 2
# coefs = lstsq(A, b)[0]
LAMBDAS = np.array([0.41, 0.4, 0.37, 0.44, 0.39])[:, np.newaxis]
COEFS = np.array([-1854.8214151, 3516.89893646, 221.29346712,
128.12323805, -2010.49422654])[:, np.newaxis]
class _BinaryGaussianProcessClassifierLaplace(BaseEstimator):
"""Binary Gaussian process classification based on Laplace approximation.
The implementation is based on Algorithm 3.1, 3.2, and 5.1 of
``Gaussian Processes for Machine Learning'' (GPML) by Rasmussen and
Williams.
Internally, the Laplace approximation is used for approximating the
non-Gaussian posterior by a Gaussian.
Currently, the implementation is restricted to using the logistic link
function.
.. versionadded:: 0.18
Parameters
----------
kernel : kernel object
The kernel specifying the covariance function of the GP. If None is
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
the kernel's hyperparameters are optimized during fitting.
optimizer : string or callable, optional (default: "fmin_l_bfgs_b")
Can either be one of the internally supported optimizers for optimizing
the kernel's parameters, specified by a string, or an externally
defined optimizer passed as a callable. If a callable is passed, it
must have the signature::
def optimizer(obj_func, initial_theta, bounds):
# * 'obj_func' is the objective function to be maximized, which
# takes the hyperparameters theta as parameter and an
# optional flag eval_gradient, which determines if the
# gradient is returned additionally to the function value
# * 'initial_theta': the initial value for theta, which can be
# used by local optimizers
# * 'bounds': the bounds on the values of theta
....
# Returned are the best found hyperparameters theta and
# the corresponding value of the target function.
return theta_opt, func_min
Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize
is used. If None is passed, the kernel's parameters are kept fixed.
Available internal optimizers are::
'fmin_l_bfgs_b'
n_restarts_optimizer: int, optional (default: 0)
The number of restarts of the optimizer for finding the kernel's
parameters which maximize the log-marginal likelihood. The first run
of the optimizer is performed from the kernel's initial parameters,
the remaining ones (if any) from thetas sampled log-uniform randomly
from the space of allowed theta-values. If greater than 0, all bounds
must be finite. Note that n_restarts_optimizer=0 implies that one
run is performed.
max_iter_predict: int, optional (default: 100)
The maximum number of iterations in Newton's method for approximating
the posterior during predict. Smaller values will reduce computation
time at the cost of worse results.
warm_start : bool, optional (default: False)
If warm-starts are enabled, the solution of the last Newton iteration
on the Laplace approximation of the posterior mode is used as
initialization for the next call of _posterior_mode(). This can speed
up convergence when _posterior_mode is called several times on similar
problems as in hyperparameter optimization. See :term:`the Glossary
<warm_start>`.
copy_X_train : bool, optional (default: True)
If True, a persistent copy of the training data is stored in the
object. Otherwise, just a reference to the training data is stored,
which might cause predictions to change if the data is modified
externally.
random_state : int, RandomState instance or None, optional (default: None)
The generator used to initialize the centers. If int, random_state is
the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number
generator is the RandomState instance used by `np.random`.
Attributes
----------
X_train_ : array-like, shape = (n_samples, n_features)
Feature values in training data (also required for prediction)
y_train_ : array-like, shape = (n_samples,)
Target values in training data (also required for prediction)
classes_ : array-like, shape = (n_classes,)
Unique class labels.
kernel_ : kernel object
The kernel used for prediction. The structure of the kernel is the
same as the one passed as parameter but with optimized hyperparameters
L_ : array-like, shape = (n_samples, n_samples)
Lower-triangular Cholesky decomposition of the kernel in X_train_
pi_ : array-like, shape = (n_samples,)
The probabilities of the positive class for the training points
X_train_
W_sr_ : array-like, shape = (n_samples,)
Square root of W, the Hessian of log-likelihood of the latent function
values for the observed labels. Since W is diagonal, only the diagonal
of sqrt(W) is stored.
log_marginal_likelihood_value_ : float
The log-marginal-likelihood of ``self.kernel_.theta``
"""
def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b",
n_restarts_optimizer=0, max_iter_predict=100,
warm_start=False, copy_X_train=True, random_state=None):
self.kernel = kernel
self.optimizer = optimizer
self.n_restarts_optimizer = n_restarts_optimizer
self.max_iter_predict = max_iter_predict
self.warm_start = warm_start
self.copy_X_train = copy_X_train
self.random_state = random_state
def fit(self, X, y):
"""Fit Gaussian process classification model
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Training data
y : array-like, shape = (n_samples,)
Target values, must be binary
Returns
-------
self : returns an instance of self.
"""
if self.kernel is None: # Use an RBF kernel as default
self.kernel_ = C(1.0, constant_value_bounds="fixed") \
* RBF(1.0, length_scale_bounds="fixed")
else:
self.kernel_ = clone(self.kernel)
self.rng = check_random_state(self.random_state)
self.X_train_ = np.copy(X) if self.copy_X_train else X
# Encode class labels and check that it is a binary classification
# problem
label_encoder = LabelEncoder()
self.y_train_ = label_encoder.fit_transform(y)
self.classes_ = label_encoder.classes_
if self.classes_.size > 2:
raise ValueError("%s supports only binary classification. "
"y contains classes %s"
% (self.__class__.__name__, self.classes_))
elif self.classes_.size == 1:
raise ValueError("{0:s} requires 2 classes; got {1:d} class"
.format(self.__class__.__name__,
self.classes_.size))
if self.optimizer is not None and self.kernel_.n_dims > 0:
# Choose hyperparameters based on maximizing the log-marginal
# likelihood (potentially starting from several initial values)
def obj_func(theta, eval_gradient=True):
if eval_gradient:
lml, grad = self.log_marginal_likelihood(
theta, eval_gradient=True)
return -lml, -grad
else:
return -self.log_marginal_likelihood(theta)
# First optimize starting from theta specified in kernel
optima = [self._constrained_optimization(obj_func,
self.kernel_.theta,
self.kernel_.bounds)]
# Additional runs are performed from log-uniform chosen initial
# theta
if self.n_restarts_optimizer > 0:
if not np.isfinite(self.kernel_.bounds).all():
raise ValueError(
"Multiple optimizer restarts (n_restarts_optimizer>0) "
"requires that all bounds are finite.")
bounds = self.kernel_.bounds
for iteration in range(self.n_restarts_optimizer):
theta_initial = np.exp(self.rng.uniform(bounds[:, 0],
bounds[:, 1]))
optima.append(
self._constrained_optimization(obj_func, theta_initial,
bounds))
# Select result from run with minimal (negative) log-marginal
# likelihood
lml_values = list(map(itemgetter(1), optima))
self.kernel_.theta = optima[np.argmin(lml_values)][0]
self.log_marginal_likelihood_value_ = -np.min(lml_values)
else:
self.log_marginal_likelihood_value_ = \
self.log_marginal_likelihood(self.kernel_.theta)
# Precompute quantities required for predictions which are independent
# of actual query points
K = self.kernel_(self.X_train_)
_, (self.pi_, self.W_sr_, self.L_, _, _) = \
self._posterior_mode(K, return_temporaries=True)
return self
def predict(self, X):
"""Perform classification on an array of test vectors X.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Returns
-------
C : array, shape = (n_samples,)
Predicted target values for X, values are from ``classes_``
"""
check_is_fitted(self, ["X_train_", "y_train_", "pi_", "W_sr_", "L_"])
# As discussed on Section 3.4.2 of GPML, for making hard binary
# decisions, it is enough to compute the MAP of the posterior and
# pass it through the link function
K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star)
f_star = K_star.T.dot(self.y_train_ - self.pi_) # Algorithm 3.2,Line 4
return np.where(f_star > 0, self.classes_[1], self.classes_[0])
def predict_proba(self, X):
"""Return probability estimates for the test vector X.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Returns
-------
C : array-like, shape = (n_samples, n_classes)
Returns the probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute ``classes_``.
"""
check_is_fitted(self, ["X_train_", "y_train_", "pi_", "W_sr_", "L_"])
# Based on Algorithm 3.2 of GPML
K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star)
f_star = K_star.T.dot(self.y_train_ - self.pi_) # Line 4
v = solve(self.L_, self.W_sr_[:, np.newaxis] * K_star) # Line 5
# Line 6 (compute np.diag(v.T.dot(v)) via einsum)
var_f_star = self.kernel_.diag(X) - np.einsum("ij,ij->j", v, v)
# Line 7:
# Approximate \int log(z) * N(z | f_star, var_f_star)
# Approximation is due to Williams & Barber, "Bayesian Classification
# with Gaussian Processes", Appendix A: Approximate the logistic
# sigmoid by a linear combination of 5 error functions.
# For information on how this integral can be computed see
# blitiri.blogspot.de/2012/11/gaussian-integral-of-error-function.html
alpha = 1 / (2 * var_f_star)
gamma = LAMBDAS * f_star
integrals = np.sqrt(np.pi / alpha) \
* erf(gamma * np.sqrt(alpha / (alpha + LAMBDAS**2))) \
/ (2 * np.sqrt(var_f_star * 2 * np.pi))
pi_star = (COEFS * integrals).sum(axis=0) + .5 * COEFS.sum()
return np.vstack((1 - pi_star, pi_star)).T
def log_marginal_likelihood(self, theta=None, eval_gradient=False):
"""Returns log-marginal likelihood of theta for training data.
Parameters
----------
theta : array-like, shape = (n_kernel_params,) or None
Kernel hyperparameters for which the log-marginal likelihood is
evaluated. If None, the precomputed log_marginal_likelihood
of ``self.kernel_.theta`` is returned.
eval_gradient : bool, default: False
If True, the gradient of the log-marginal likelihood with respect
to the kernel hyperparameters at position theta is returned
additionally. If True, theta must not be None.
Returns
-------
log_likelihood : float
Log-marginal likelihood of theta for training data.
log_likelihood_gradient : array, shape = (n_kernel_params,), optional
Gradient of the log-marginal likelihood with respect to the kernel
hyperparameters at position theta.
Only returned when eval_gradient is True.
"""
if theta is None:
if eval_gradient:
raise ValueError(
"Gradient can only be evaluated for theta!=None")
return self.log_marginal_likelihood_value_
kernel = self.kernel_.clone_with_theta(theta)
if eval_gradient:
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
else:
K = kernel(self.X_train_)
# Compute log-marginal-likelihood Z and also store some temporaries
# which can be reused for computing Z's gradient
Z, (pi, W_sr, L, b, a) = \
self._posterior_mode(K, return_temporaries=True)
if not eval_gradient:
return Z
# Compute gradient based on Algorithm 5.1 of GPML
d_Z = np.empty(theta.shape[0])
# XXX: Get rid of the np.diag() in the next line
R = W_sr[:, np.newaxis] * cho_solve((L, True), np.diag(W_sr)) # Line 7
C = solve(L, W_sr[:, np.newaxis] * K) # Line 8
# Line 9: (use einsum to compute np.diag(C.T.dot(C))))
s_2 = -0.5 * (np.diag(K) - np.einsum('ij, ij -> j', C, C)) \
* (pi * (1 - pi) * (1 - 2 * pi)) # third derivative
for j in range(d_Z.shape[0]):
C = K_gradient[:, :, j] # Line 11
# Line 12: (R.T.ravel().dot(C.ravel()) = np.trace(R.dot(C)))
s_1 = .5 * a.T.dot(C).dot(a) - .5 * R.T.ravel().dot(C.ravel())
b = C.dot(self.y_train_ - pi) # Line 13
s_3 = b - K.dot(R.dot(b)) # Line 14
d_Z[j] = s_1 + s_2.T.dot(s_3) # Line 15
return Z, d_Z
def _posterior_mode(self, K, return_temporaries=False):
"""Mode-finding for binary Laplace GPC and fixed kernel.
This approximates the posterior of the latent function values for given
inputs and target observations with a Gaussian approximation and uses
Newton's iteration to find the mode of this approximation.
"""
# Based on Algorithm 3.1 of GPML
# If warm_start are enabled, we reuse the last solution for the
# posterior mode as initialization; otherwise, we initialize with 0
if self.warm_start and hasattr(self, "f_cached") \
and self.f_cached.shape == self.y_train_.shape:
f = self.f_cached
else:
f = np.zeros_like(self.y_train_, dtype=np.float64)
# Use Newton's iteration method to find mode of Laplace approximation
log_marginal_likelihood = -np.inf
for _ in range(self.max_iter_predict):
# Line 4
pi = expit(f)
W = pi * (1 - pi)
# Line 5
W_sr = np.sqrt(W)
W_sr_K = W_sr[:, np.newaxis] * K
B = np.eye(W.shape[0]) + W_sr_K * W_sr
L = cholesky(B, lower=True)
# Line 6
b = W * f + (self.y_train_ - pi)
# Line 7
a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b))
# Line 8
f = K.dot(a)
# Line 10: Compute log marginal likelihood in loop and use as
# convergence criterion
lml = -0.5 * a.T.dot(f) \
- np.log1p(np.exp(-(self.y_train_ * 2 - 1) * f)).sum() \
- np.log(np.diag(L)).sum()
# Check if we have converged (log marginal likelihood does
# not decrease)
# XXX: more complex convergence criterion
if lml - log_marginal_likelihood < 1e-10:
break
log_marginal_likelihood = lml
self.f_cached = f # Remember solution for later warm-starts
if return_temporaries:
return log_marginal_likelihood, (pi, W_sr, L, b, a)
else:
return log_marginal_likelihood
def _constrained_optimization(self, obj_func, initial_theta, bounds):
if self.optimizer == "fmin_l_bfgs_b":
theta_opt, func_min, convergence_dict = \
fmin_l_bfgs_b(obj_func, initial_theta, bounds=bounds)
if convergence_dict["warnflag"] != 0:
warnings.warn("fmin_l_bfgs_b terminated abnormally with the "
" state: %s" % convergence_dict,
ConvergenceWarning)
elif callable(self.optimizer):
theta_opt, func_min = \
self.optimizer(obj_func, initial_theta, bounds=bounds)
else:
raise ValueError("Unknown optimizer %s." % self.optimizer)
return theta_opt, func_min
class GaussianProcessClassifier(BaseEstimator, ClassifierMixin):
"""Gaussian process classification (GPC) based on Laplace approximation.
The implementation is based on Algorithm 3.1, 3.2, and 5.1 of
Gaussian Processes for Machine Learning (GPML) by Rasmussen and
Williams.
Internally, the Laplace approximation is used for approximating the
non-Gaussian posterior by a Gaussian.
Currently, the implementation is restricted to using the logistic link
function. For multi-class classification, several binary one-versus rest
classifiers are fitted. Note that this class thus does not implement
a true multi-class Laplace approximation.
Parameters
----------
kernel : kernel object
The kernel specifying the covariance function of the GP. If None is
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
the kernel's hyperparameters are optimized during fitting.
optimizer : string or callable, optional (default: "fmin_l_bfgs_b")
Can either be one of the internally supported optimizers for optimizing
the kernel's parameters, specified by a string, or an externally
defined optimizer passed as a callable. If a callable is passed, it
must have the signature::
def optimizer(obj_func, initial_theta, bounds):
# * 'obj_func' is the objective function to be maximized, which
# takes the hyperparameters theta as parameter and an
# optional flag eval_gradient, which determines if the
# gradient is returned additionally to the function value
# * 'initial_theta': the initial value for theta, which can be
# used by local optimizers
# * 'bounds': the bounds on the values of theta
....
# Returned are the best found hyperparameters theta and
# the corresponding value of the target function.
return theta_opt, func_min
Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize
is used. If None is passed, the kernel's parameters are kept fixed.
Available internal optimizers are::
'fmin_l_bfgs_b'
n_restarts_optimizer : int, optional (default: 0)
The number of restarts of the optimizer for finding the kernel's
parameters which maximize the log-marginal likelihood. The first run
of the optimizer is performed from the kernel's initial parameters,
the remaining ones (if any) from thetas sampled log-uniform randomly
from the space of allowed theta-values. If greater than 0, all bounds
must be finite. Note that n_restarts_optimizer=0 implies that one
run is performed.
max_iter_predict : int, optional (default: 100)
The maximum number of iterations in Newton's method for approximating
the posterior during predict. Smaller values will reduce computation
time at the cost of worse results.
warm_start : bool, optional (default: False)
If warm-starts are enabled, the solution of the last Newton iteration
on the Laplace approximation of the posterior mode is used as
initialization for the next call of _posterior_mode(). This can speed
up convergence when _posterior_mode is called several times on similar
problems as in hyperparameter optimization. See :term:`the Glossary
<warm_start>`.
copy_X_train : bool, optional (default: True)
If True, a persistent copy of the training data is stored in the
object. Otherwise, just a reference to the training data is stored,
which might cause predictions to change if the data is modified
externally.
random_state : int, RandomState instance or None, optional (default: None)
The generator used to initialize the centers.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
multi_class : string, default : "one_vs_rest"
Specifies how multi-class classification problems are handled.
Supported are "one_vs_rest" and "one_vs_one". In "one_vs_rest",
one binary Gaussian process classifier is fitted for each class, which
is trained to separate this class from the rest. In "one_vs_one", one
binary Gaussian process classifier is fitted for each pair of classes,
which is trained to separate these two classes. The predictions of
these binary predictors are combined into multi-class predictions.
Note that "one_vs_one" does not support predicting probability
estimates.
n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
kernel_ : kernel object
The kernel used for prediction. In case of binary classification,
the structure of the kernel is the same as the one passed as parameter
but with optimized hyperparameters. In case of multi-class
classification, a CompoundKernel is returned which consists of the
different kernels used in the one-versus-rest classifiers.
log_marginal_likelihood_value_ : float
The log-marginal-likelihood of ``self.kernel_.theta``
classes_ : array-like, shape = (n_classes,)
Unique class labels.
n_classes_ : int
The number of classes in the training data
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn.gaussian_process import GaussianProcessClassifier
>>> from sklearn.gaussian_process.kernels import RBF
>>> X, y = load_iris(return_X_y=True)
>>> kernel = 1.0 * RBF(1.0)
>>> gpc = GaussianProcessClassifier(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpc.score(X, y) # doctest: +ELLIPSIS
0.9866...
>>> gpc.predict_proba(X[:2,:])
array([[0.83548752, 0.03228706, 0.13222543],
[0.79064206, 0.06525643, 0.14410151]])
.. versionadded:: 0.18
"""
def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b",
n_restarts_optimizer=0, max_iter_predict=100,
warm_start=False, copy_X_train=True, random_state=None,
multi_class="one_vs_rest", n_jobs=None):
self.kernel = kernel
self.optimizer = optimizer
self.n_restarts_optimizer = n_restarts_optimizer
self.max_iter_predict = max_iter_predict
self.warm_start = warm_start
self.copy_X_train = copy_X_train
self.random_state = random_state
self.multi_class = multi_class
self.n_jobs = n_jobs
def fit(self, X, y):
"""Fit Gaussian process classification model
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Training data
y : array-like, shape = (n_samples,)
Target values, must be binary
Returns
-------
self : returns an instance of self.
"""
X, y = check_X_y(X, y, multi_output=False)
self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(
self.kernel, self.optimizer, self.n_restarts_optimizer,
self.max_iter_predict, self.warm_start, self.copy_X_train,
self.random_state)
self.classes_ = np.unique(y)
self.n_classes_ = self.classes_.size
if self.n_classes_ == 1:
raise ValueError("GaussianProcessClassifier requires 2 or more "
"distinct classes; got %d class (only class %s "
"is present)"
% (self.n_classes_, self.classes_[0]))
if self.n_classes_ > 2:
if self.multi_class == "one_vs_rest":
self.base_estimator_ = \
OneVsRestClassifier(self.base_estimator_,
n_jobs=self.n_jobs)
elif self.multi_class == "one_vs_one":
self.base_estimator_ = \
OneVsOneClassifier(self.base_estimator_,
n_jobs=self.n_jobs)
else:
raise ValueError("Unknown multi-class mode %s"
% self.multi_class)
self.base_estimator_.fit(X, y)
if self.n_classes_ > 2:
self.log_marginal_likelihood_value_ = np.mean(
[estimator.log_marginal_likelihood()
for estimator in self.base_estimator_.estimators_])
else:
self.log_marginal_likelihood_value_ = \
self.base_estimator_.log_marginal_likelihood()
return self
def predict(self, X):
"""Perform classification on an array of test vectors X.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Returns
-------
C : array, shape = (n_samples,)
Predicted target values for X, values are from ``classes_``
"""
check_is_fitted(self, ["classes_", "n_classes_"])
X = check_array(X)
return self.base_estimator_.predict(X)
def predict_proba(self, X):
"""Return probability estimates for the test vector X.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Returns
-------
C : array-like, shape = (n_samples, n_classes)
Returns the probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute `classes_`.
"""
check_is_fitted(self, ["classes_", "n_classes_"])
if self.n_classes_ > 2 and self.multi_class == "one_vs_one":
raise ValueError("one_vs_one multi-class mode does not support "
"predicting probability estimates. Use "
"one_vs_rest mode instead.")
X = check_array(X)
return self.base_estimator_.predict_proba(X)
@property
def kernel_(self):
if self.n_classes_ == 2:
return self.base_estimator_.kernel_
else:
return CompoundKernel(
[estimator.kernel_
for estimator in self.base_estimator_.estimators_])
def log_marginal_likelihood(self, theta=None, eval_gradient=False):
"""Returns log-marginal likelihood of theta for training data.
In the case of multi-class classification, the mean log-marginal
likelihood of the one-versus-rest classifiers are returned.
Parameters
----------
theta : array-like, shape = (n_kernel_params,) or none
Kernel hyperparameters for which the log-marginal likelihood is
evaluated. In the case of multi-class classification, theta may
be the hyperparameters of the compound kernel or of an individual
kernel. In the latter case, all individual kernel get assigned the
same theta values. If None, the precomputed log_marginal_likelihood
of ``self.kernel_.theta`` is returned.
eval_gradient : bool, default: False
If True, the gradient of the log-marginal likelihood with respect
to the kernel hyperparameters at position theta is returned
additionally. Note that gradient computation is not supported
for non-binary classification. If True, theta must not be None.
Returns
-------
log_likelihood : float
Log-marginal likelihood of theta for training data.
log_likelihood_gradient : array, shape = (n_kernel_params,), optional
Gradient of the log-marginal likelihood with respect to the kernel
hyperparameters at position theta.
Only returned when eval_gradient is True.
"""
check_is_fitted(self, ["classes_", "n_classes_"])
if theta is None:
if eval_gradient:
raise ValueError(
"Gradient can only be evaluated for theta!=None")
return self.log_marginal_likelihood_value_
theta = np.asarray(theta)
if self.n_classes_ == 2:
return self.base_estimator_.log_marginal_likelihood(
theta, eval_gradient)
else:
if eval_gradient:
raise NotImplementedError(
"Gradient of log-marginal-likelihood not implemented for "
"multi-class GPC.")
estimators = self.base_estimator_.estimators_
n_dims = estimators[0].kernel_.n_dims
if theta.shape[0] == n_dims: # use same theta for all sub-kernels
return np.mean(
[estimator.log_marginal_likelihood(theta)
for i, estimator in enumerate(estimators)])
elif theta.shape[0] == n_dims * self.classes_.shape[0]:
# theta for compound kernel
return np.mean(
[estimator.log_marginal_likelihood(
theta[n_dims * i:n_dims * (i + 1)])
for i, estimator in enumerate(estimators)])
else:
raise ValueError("Shape of theta must be either %d or %d. "
"Obtained theta with shape %d."
% (n_dims, n_dims * self.classes_.shape[0],
theta.shape[0]))
|