File: bayes.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (567 lines) | stat: -rw-r--r-- 21,171 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
"""
Various bayesian regression
"""
from __future__ import print_function

# Authors: V. Michel, F. Pedregosa, A. Gramfort
# License: BSD 3 clause

from math import log
import numpy as np
from scipy import linalg
from scipy.linalg import pinvh

from .base import LinearModel, _rescale_data
from ..base import RegressorMixin
from ..utils.extmath import fast_logdet
from ..utils import check_X_y


###############################################################################
# BayesianRidge regression

class BayesianRidge(LinearModel, RegressorMixin):
    """Bayesian ridge regression

    Fit a Bayesian ridge model and optimize the regularization parameters
    lambda (precision of the weights) and alpha (precision of the noise).

    Read more in the :ref:`User Guide <bayesian_regression>`.

    Parameters
    ----------
    n_iter : int, optional
        Maximum number of iterations.  Default is 300.

    tol : float, optional
        Stop the algorithm if w has converged. Default is 1.e-3.

    alpha_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the alpha parameter. Default is 1.e-6

    alpha_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the alpha parameter.
        Default is 1.e-6.

    lambda_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the lambda parameter. Default is 1.e-6.

    lambda_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the lambda parameter.
        Default is 1.e-6

    compute_score : boolean, optional
        If True, compute the objective function at each step of the model.
        Default is False

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).
        Default is True.

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    verbose : boolean, optional, default False
        Verbose mode when fitting the model.


    Attributes
    ----------
    coef_ : array, shape = (n_features)
        Coefficients of the regression model (mean of distribution)

    alpha_ : float
       estimated precision of the noise.

    lambda_ : float
       estimated precision of the weights.

    sigma_ : array, shape = (n_features, n_features)
        estimated variance-covariance matrix of the weights

    scores_ : float
        if computed, value of the objective function (to be maximized)

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.BayesianRidge()
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    ... # doctest: +NORMALIZE_WHITESPACE
    BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
            copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
            n_iter=300, normalize=False, tol=0.001, verbose=False)
    >>> clf.predict([[1, 1]])
    array([1.])

    Notes
    -----
    For an example, see :ref:`examples/linear_model/plot_bayesian_ridge.py
    <sphx_glr_auto_examples_linear_model_plot_bayesian_ridge.py>`.

    References
    ----------
    D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems,
    Vol. 4, No. 3, 1992.

    R. Salakhutdinov, Lecture notes on Statistical Machine Learning,
    http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
    Their beta is our ``self.alpha_``
    Their alpha is our ``self.lambda_``
    """

    def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
                 lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
                 fit_intercept=True, normalize=False, copy_X=True,
                 verbose=False):
        self.n_iter = n_iter
        self.tol = tol
        self.alpha_1 = alpha_1
        self.alpha_2 = alpha_2
        self.lambda_1 = lambda_1
        self.lambda_2 = lambda_2
        self.compute_score = compute_score
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.copy_X = copy_X
        self.verbose = verbose

    def fit(self, X, y, sample_weight=None):
        """Fit the model

        Parameters
        ----------
        X : numpy array of shape [n_samples,n_features]
            Training data
        y : numpy array of shape [n_samples]
            Target values. Will be cast to X's dtype if necessary

        sample_weight : numpy array of shape [n_samples]
            Individual weights for each sample

            .. versionadded:: 0.20
               parameter *sample_weight* support to BayesianRidge.

        Returns
        -------
        self : returns an instance of self.
        """
        X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True)
        X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        if sample_weight is not None:
            # Sample weight can be implemented via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

        self.X_offset_ = X_offset_
        self.X_scale_ = X_scale_
        n_samples, n_features = X.shape

        # Initialization of the values of the parameters
        eps = np.finfo(np.float64).eps
        # Add `eps` in the denominator to omit division by zero if `np.var(y)`
        # is zero
        alpha_ = 1. / (np.var(y) + eps)
        lambda_ = 1.

        verbose = self.verbose
        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2

        self.scores_ = list()
        coef_old_ = None

        XT_y = np.dot(X.T, y)
        U, S, Vh = linalg.svd(X, full_matrices=False)
        eigen_vals_ = S ** 2

        # Convergence loop of the bayesian ridge regression
        for iter_ in range(self.n_iter):

            # Compute mu and sigma
            # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X)
            # coef_ = sigma_^-1 * XT * y
            if n_samples > n_features:
                coef_ = np.dot(Vh.T,
                               Vh / (eigen_vals_ +
                                     lambda_ / alpha_)[:, np.newaxis])
                coef_ = np.dot(coef_, XT_y)
                if self.compute_score:
                    logdet_sigma_ = - np.sum(
                        np.log(lambda_ + alpha_ * eigen_vals_))
            else:
                coef_ = np.dot(X.T, np.dot(
                    U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T))
                coef_ = np.dot(coef_, y)
                if self.compute_score:
                    logdet_sigma_ = np.full(n_features, lambda_,
                                            dtype=np.array(lambda_).dtype)
                    logdet_sigma_[:n_samples] += alpha_ * eigen_vals_
                    logdet_sigma_ = - np.sum(np.log(logdet_sigma_))

            # Preserve the alpha and lambda values that were used to
            # calculate the final coefficients
            self.alpha_ = alpha_
            self.lambda_ = lambda_

            # Update alpha and lambda
            rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
            gamma_ = (np.sum((alpha_ * eigen_vals_) /
                      (lambda_ + alpha_ * eigen_vals_)))
            lambda_ = ((gamma_ + 2 * lambda_1) /
                       (np.sum(coef_ ** 2) + 2 * lambda_2))
            alpha_ = ((n_samples - gamma_ + 2 * alpha_1) /
                      (rmse_ + 2 * alpha_2))

            # Compute the objective function
            if self.compute_score:
                s = lambda_1 * log(lambda_) - lambda_2 * lambda_
                s += alpha_1 * log(alpha_) - alpha_2 * alpha_
                s += 0.5 * (n_features * log(lambda_) +
                            n_samples * log(alpha_) -
                            alpha_ * rmse_ -
                            (lambda_ * np.sum(coef_ ** 2)) -
                            logdet_sigma_ -
                            n_samples * log(2 * np.pi))
                self.scores_.append(s)

            # Check for convergence
            if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
                if verbose:
                    print("Convergence after ", str(iter_), " iterations")
                break
            coef_old_ = np.copy(coef_)

        self.coef_ = coef_
        sigma_ = np.dot(Vh.T,
                        Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis])
        self.sigma_ = (1. / alpha_) * sigma_

        self._set_intercept(X_offset_, y_offset_, X_scale_)
        return self

    def predict(self, X, return_std=False):
        """Predict using the linear model.

        In addition to the mean of the predictive distribution, also its
        standard deviation can be returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = (n_samples, n_features)
            Samples.

        return_std : boolean, optional
            Whether to return the standard deviation of posterior prediction.

        Returns
        -------
        y_mean : array, shape = (n_samples,)
            Mean of predictive distribution of query points.

        y_std : array, shape = (n_samples,)
            Standard deviation of predictive distribution of query points.
        """
        y_mean = self._decision_function(X)
        if return_std is False:
            return y_mean
        else:
            if self.normalize:
                X = (X - self.X_offset_) / self.X_scale_
            sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
            y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
            return y_mean, y_std


###############################################################################
# ARD (Automatic Relevance Determination) regression


class ARDRegression(LinearModel, RegressorMixin):
    """Bayesian ARD regression.

    Fit the weights of a regression model, using an ARD prior. The weights of
    the regression model are assumed to be in Gaussian distributions.
    Also estimate the parameters lambda (precisions of the distributions of the
    weights) and alpha (precision of the distribution of the noise).
    The estimation is done by an iterative procedures (Evidence Maximization)

    Read more in the :ref:`User Guide <bayesian_regression>`.

    Parameters
    ----------
    n_iter : int, optional
        Maximum number of iterations. Default is 300

    tol : float, optional
        Stop the algorithm if w has converged. Default is 1.e-3.

    alpha_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the alpha parameter. Default is 1.e-6.

    alpha_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the alpha parameter. Default is 1.e-6.

    lambda_1 : float, optional
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the lambda parameter. Default is 1.e-6.

    lambda_2 : float, optional
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the lambda parameter. Default is 1.e-6.

    compute_score : boolean, optional
        If True, compute the objective function at each step of the model.
        Default is False.

    threshold_lambda : float, optional
        threshold for removing (pruning) weights with high precision from
        the computation. Default is 1.e+4.

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).
        Default is True.

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : boolean, optional, default True.
        If True, X will be copied; else, it may be overwritten.

    verbose : boolean, optional, default False
        Verbose mode when fitting the model.

    Attributes
    ----------
    coef_ : array, shape = (n_features)
        Coefficients of the regression model (mean of distribution)

    alpha_ : float
       estimated precision of the noise.

    lambda_ : array, shape = (n_features)
       estimated precisions of the weights.

    sigma_ : array, shape = (n_features, n_features)
        estimated variance-covariance matrix of the weights

    scores_ : float
        if computed, value of the objective function (to be maximized)

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.ARDRegression()
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    ... # doctest: +NORMALIZE_WHITESPACE
    ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
            copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06,
            n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001,
            verbose=False)
    >>> clf.predict([[1, 1]])
    array([1.])

    Notes
    -----
    For an example, see :ref:`examples/linear_model/plot_ard.py
    <sphx_glr_auto_examples_linear_model_plot_ard.py>`.

    References
    ----------
    D. J. C. MacKay, Bayesian nonlinear modeling for the prediction
    competition, ASHRAE Transactions, 1994.

    R. Salakhutdinov, Lecture notes on Statistical Machine Learning,
    http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
    Their beta is our ``self.alpha_``
    Their alpha is our ``self.lambda_``
    ARD is a little different than the slide: only dimensions/features for
    which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are
    discarded.
    """

    def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
                 lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
                 threshold_lambda=1.e+4, fit_intercept=True, normalize=False,
                 copy_X=True, verbose=False):
        self.n_iter = n_iter
        self.tol = tol
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.alpha_1 = alpha_1
        self.alpha_2 = alpha_2
        self.lambda_1 = lambda_1
        self.lambda_2 = lambda_2
        self.compute_score = compute_score
        self.threshold_lambda = threshold_lambda
        self.copy_X = copy_X
        self.verbose = verbose

    def fit(self, X, y):
        """Fit the ARDRegression model according to the given training data
        and parameters.

        Iterative procedure to maximize the evidence

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : array, shape = [n_samples]
            Target values (integers). Will be cast to X's dtype if necessary

        Returns
        -------
        self : returns an instance of self.
        """
        X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True,
                         ensure_min_samples=2)

        n_samples, n_features = X.shape
        coef_ = np.zeros(n_features)

        X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X)

        # Launch the convergence loop
        keep_lambda = np.ones(n_features, dtype=bool)

        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2
        verbose = self.verbose

        # Initialization of the values of the parameters
        eps = np.finfo(np.float64).eps
        # Add `eps` in the denominator to omit division by zero if `np.var(y)`
        # is zero
        alpha_ = 1. / (np.var(y) + eps)
        lambda_ = np.ones(n_features)

        self.scores_ = list()
        coef_old_ = None

        # Compute sigma and mu (using Woodbury matrix identity)
        def update_sigma(X, alpha_, lambda_, keep_lambda, n_samples):
            sigma_ = pinvh(np.eye(n_samples) / alpha_ +
                           np.dot(X[:, keep_lambda] *
                           np.reshape(1. / lambda_[keep_lambda], [1, -1]),
                           X[:, keep_lambda].T))
            sigma_ = np.dot(sigma_, X[:, keep_lambda] *
                            np.reshape(1. / lambda_[keep_lambda], [1, -1]))
            sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) *
                              X[:, keep_lambda].T, sigma_)
            sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda]
            return sigma_

        def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):
            coef_[keep_lambda] = alpha_ * np.dot(
                sigma_, np.dot(X[:, keep_lambda].T, y))
            return coef_

        # Iterative procedure of ARDRegression
        for iter_ in range(self.n_iter):
            sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda, n_samples)
            coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)

            # Update alpha and lambda
            rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
            gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_)
            lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) /
                                    ((coef_[keep_lambda]) ** 2 +
                                     2. * lambda_2))
            alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) /
                      (rmse_ + 2. * alpha_2))

            # Prune the weights with a precision over a threshold
            keep_lambda = lambda_ < self.threshold_lambda
            coef_[~keep_lambda] = 0

            # Compute the objective function
            if self.compute_score:
                s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()
                s += alpha_1 * log(alpha_) - alpha_2 * alpha_
                s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) +
                            np.sum(np.log(lambda_)))
                s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum())
                self.scores_.append(s)

            # Check for convergence
            if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
                if verbose:
                    print("Converged after %s iterations" % iter_)
                break
            coef_old_ = np.copy(coef_)

        # update sigma and mu using updated parameters from the last iteration
        sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda, n_samples)
        coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)

        self.coef_ = coef_
        self.alpha_ = alpha_
        self.sigma_ = sigma_
        self.lambda_ = lambda_
        self._set_intercept(X_offset_, y_offset_, X_scale_)
        return self

    def predict(self, X, return_std=False):
        """Predict using the linear model.

        In addition to the mean of the predictive distribution, also its
        standard deviation can be returned.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = (n_samples, n_features)
            Samples.

        return_std : boolean, optional
            Whether to return the standard deviation of posterior prediction.

        Returns
        -------
        y_mean : array, shape = (n_samples,)
            Mean of predictive distribution of query points.

        y_std : array, shape = (n_samples,)
            Standard deviation of predictive distribution of query points.
        """
        y_mean = self._decision_function(X)
        if return_std is False:
            return y_mean
        else:
            if self.normalize:
                X = (X - self.X_offset_) / self.X_scale_
            X = X[:, self.lambda_ < self.threshold_lambda]
            sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
            y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
            return y_mean, y_std