File: logistic.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1931 lines) | stat: -rw-r--r-- 76,705 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
"""
Logistic Regression
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Fabian Pedregosa <f@bianp.net>
#         Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Manoj Kumar <manojkumarsivaraj334@gmail.com>
#         Lars Buitinck
#         Simon Wu <s8wu@uwaterloo.ca>
#         Arthur Mensch <arthur.mensch@m4x.org

import numbers
import warnings

import numpy as np
from scipy import optimize, sparse
from scipy.special import expit

from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator
from .sag import sag_solver
from ..preprocessing import LabelEncoder, LabelBinarizer
from ..svm.base import _fit_liblinear
from ..utils import check_array, check_consistent_length, compute_class_weight
from ..utils import check_random_state
from ..utils.extmath import (log_logistic, safe_sparse_dot, softmax,
                             squared_norm)
from ..utils.extmath import row_norms
from ..utils.fixes import logsumexp
from ..utils.optimize import newton_cg
from ..utils.validation import check_X_y
from ..exceptions import (NotFittedError, ConvergenceWarning,
                          ChangedBehaviorWarning)
from ..utils.multiclass import check_classification_targets
from ..utils._joblib import Parallel, delayed, effective_n_jobs
from ..utils.fixes import _joblib_parallel_args
from ..model_selection import check_cv
from ..externals import six
from ..metrics import get_scorer


# .. some helper functions for logistic_regression_path ..
def _intercept_dot(w, X, y):
    """Computes y * np.dot(X, w).

    It takes into consideration if the intercept should be fit or not.

    Parameters
    ----------
    w : ndarray, shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    y : ndarray, shape (n_samples,)
        Array of labels.

    Returns
    -------
    w : ndarray, shape (n_features,)
        Coefficient vector without the intercept weight (w[-1]) if the
        intercept should be fit. Unchanged otherwise.

    c : float
        The intercept.

    yz : float
        y * np.dot(X, w).
    """
    c = 0.
    if w.size == X.shape[1] + 1:
        c = w[-1]
        w = w[:-1]

    z = safe_sparse_dot(X, w) + c
    yz = y * z
    return w, c, yz


def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None):
    """Computes the logistic loss and gradient.

    Parameters
    ----------
    w : ndarray, shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    y : ndarray, shape (n_samples,)
        Array of labels.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like, shape (n_samples,) optional
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    out : float
        Logistic loss.

    grad : ndarray, shape (n_features,) or (n_features + 1,)
        Logistic gradient.
    """
    n_samples, n_features = X.shape
    grad = np.empty_like(w)

    w, c, yz = _intercept_dot(w, X, y)

    if sample_weight is None:
        sample_weight = np.ones(n_samples)

    # Logistic loss is the negative of the log of the logistic function.
    out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w)

    z = expit(yz)
    z0 = sample_weight * (z - 1) * y

    grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w

    # Case where we fit the intercept.
    if grad.shape[0] > n_features:
        grad[-1] = z0.sum()
    return out, grad


def _logistic_loss(w, X, y, alpha, sample_weight=None):
    """Computes the logistic loss.

    Parameters
    ----------
    w : ndarray, shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    y : ndarray, shape (n_samples,)
        Array of labels.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like, shape (n_samples,) optional
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    out : float
        Logistic loss.
    """
    w, c, yz = _intercept_dot(w, X, y)

    if sample_weight is None:
        sample_weight = np.ones(y.shape[0])

    # Logistic loss is the negative of the log of the logistic function.
    out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w)
    return out


def _logistic_grad_hess(w, X, y, alpha, sample_weight=None):
    """Computes the gradient and the Hessian, in the case of a logistic loss.

    Parameters
    ----------
    w : ndarray, shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    y : ndarray, shape (n_samples,)
        Array of labels.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like, shape (n_samples,) optional
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    grad : ndarray, shape (n_features,) or (n_features + 1,)
        Logistic gradient.

    Hs : callable
        Function that takes the gradient as a parameter and returns the
        matrix product of the Hessian and gradient.
    """
    n_samples, n_features = X.shape
    grad = np.empty_like(w)
    fit_intercept = grad.shape[0] > n_features

    w, c, yz = _intercept_dot(w, X, y)

    if sample_weight is None:
        sample_weight = np.ones(y.shape[0])

    z = expit(yz)
    z0 = sample_weight * (z - 1) * y

    grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w

    # Case where we fit the intercept.
    if fit_intercept:
        grad[-1] = z0.sum()

    # The mat-vec product of the Hessian
    d = sample_weight * z * (1 - z)
    if sparse.issparse(X):
        dX = safe_sparse_dot(sparse.dia_matrix((d, 0),
                             shape=(n_samples, n_samples)), X)
    else:
        # Precompute as much as possible
        dX = d[:, np.newaxis] * X

    if fit_intercept:
        # Calculate the double derivative with respect to intercept
        # In the case of sparse matrices this returns a matrix object.
        dd_intercept = np.squeeze(np.array(dX.sum(axis=0)))

    def Hs(s):
        ret = np.empty_like(s)
        ret[:n_features] = X.T.dot(dX.dot(s[:n_features]))
        ret[:n_features] += alpha * s[:n_features]

        # For the fit intercept case.
        if fit_intercept:
            ret[:n_features] += s[-1] * dd_intercept
            ret[-1] = dd_intercept.dot(s[:n_features])
            ret[-1] += d.sum() * s[-1]
        return ret

    return grad, Hs


def _multinomial_loss(w, X, Y, alpha, sample_weight):
    """Computes multinomial loss and class probabilities.

    Parameters
    ----------
    w : ndarray, shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    Y : ndarray, shape (n_samples, n_classes)
        Transformed labels according to the output of LabelBinarizer.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like, shape (n_samples,) optional
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    loss : float
        Multinomial loss.

    p : ndarray, shape (n_samples, n_classes)
        Estimated class probabilities.

    w : ndarray, shape (n_classes, n_features)
        Reshaped param vector excluding intercept terms.

    Reference
    ---------
    Bishop, C. M. (2006). Pattern recognition and machine learning.
    Springer. (Chapter 4.3.4)
    """
    n_classes = Y.shape[1]
    n_features = X.shape[1]
    fit_intercept = w.size == (n_classes * (n_features + 1))
    w = w.reshape(n_classes, -1)
    sample_weight = sample_weight[:, np.newaxis]
    if fit_intercept:
        intercept = w[:, -1]
        w = w[:, :-1]
    else:
        intercept = 0
    p = safe_sparse_dot(X, w.T)
    p += intercept
    p -= logsumexp(p, axis=1)[:, np.newaxis]
    loss = -(sample_weight * Y * p).sum()
    loss += 0.5 * alpha * squared_norm(w)
    p = np.exp(p, p)
    return loss, p, w


def _multinomial_loss_grad(w, X, Y, alpha, sample_weight):
    """Computes the multinomial loss, gradient and class probabilities.

    Parameters
    ----------
    w : ndarray, shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    Y : ndarray, shape (n_samples, n_classes)
        Transformed labels according to the output of LabelBinarizer.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like, shape (n_samples,) optional
        Array of weights that are assigned to individual samples.

    Returns
    -------
    loss : float
        Multinomial loss.

    grad : ndarray, shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Ravelled gradient of the multinomial loss.

    p : ndarray, shape (n_samples, n_classes)
        Estimated class probabilities

    Reference
    ---------
    Bishop, C. M. (2006). Pattern recognition and machine learning.
    Springer. (Chapter 4.3.4)
    """
    n_classes = Y.shape[1]
    n_features = X.shape[1]
    fit_intercept = (w.size == n_classes * (n_features + 1))
    grad = np.zeros((n_classes, n_features + bool(fit_intercept)),
                    dtype=X.dtype)
    loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight)
    sample_weight = sample_weight[:, np.newaxis]
    diff = sample_weight * (p - Y)
    grad[:, :n_features] = safe_sparse_dot(diff.T, X)
    grad[:, :n_features] += alpha * w
    if fit_intercept:
        grad[:, -1] = diff.sum(axis=0)
    return loss, grad.ravel(), p


def _multinomial_grad_hess(w, X, Y, alpha, sample_weight):
    """
    Computes the gradient and the Hessian, in the case of a multinomial loss.

    Parameters
    ----------
    w : ndarray, shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Coefficient vector.

    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    Y : ndarray, shape (n_samples, n_classes)
        Transformed labels according to the output of LabelBinarizer.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like, shape (n_samples,) optional
        Array of weights that are assigned to individual samples.

    Returns
    -------
    grad : array, shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Ravelled gradient of the multinomial loss.

    hessp : callable
        Function that takes in a vector input of shape (n_classes * n_features)
        or (n_classes * (n_features + 1)) and returns matrix-vector product
        with hessian.

    References
    ----------
    Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian.
        http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf
    """
    n_features = X.shape[1]
    n_classes = Y.shape[1]
    fit_intercept = w.size == (n_classes * (n_features + 1))

    # `loss` is unused. Refactoring to avoid computing it does not
    # significantly speed up the computation and decreases readability
    loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight)
    sample_weight = sample_weight[:, np.newaxis]

    # Hessian-vector product derived by applying the R-operator on the gradient
    # of the multinomial loss function.
    def hessp(v):
        v = v.reshape(n_classes, -1)
        if fit_intercept:
            inter_terms = v[:, -1]
            v = v[:, :-1]
        else:
            inter_terms = 0
        # r_yhat holds the result of applying the R-operator on the multinomial
        # estimator.
        r_yhat = safe_sparse_dot(X, v.T)
        r_yhat += inter_terms
        r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis]
        r_yhat *= p
        r_yhat *= sample_weight
        hessProd = np.zeros((n_classes, n_features + bool(fit_intercept)))
        hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X)
        hessProd[:, :n_features] += v * alpha
        if fit_intercept:
            hessProd[:, -1] = r_yhat.sum(axis=0)
        return hessProd.ravel()

    return grad, hessp


def _check_solver(solver, penalty, dual):
    if solver == 'warn':
        solver = 'liblinear'
        warnings.warn("Default solver will be changed to 'lbfgs' in 0.22. "
                      "Specify a solver to silence this warning.",
                      FutureWarning)

    all_solvers = ['liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga']
    if solver not in all_solvers:
        raise ValueError("Logistic Regression supports only solvers in %s, got"
                         " %s." % (all_solvers, solver))

    all_penalties = ['l1', 'l2']
    if penalty not in all_penalties:
        raise ValueError("Logistic Regression supports only penalties in %s,"
                         " got %s." % (all_penalties, penalty))

    if solver not in ['liblinear', 'saga'] and penalty != 'l2':
        raise ValueError("Solver %s supports only l2 penalties, "
                         "got %s penalty." % (solver, penalty))
    if solver != 'liblinear' and dual:
        raise ValueError("Solver %s supports only "
                         "dual=False, got dual=%s" % (solver, dual))
    return solver


def _check_multi_class(multi_class, solver, n_classes):
    if multi_class == 'warn':
        multi_class = 'ovr'
        if n_classes > 2:
            warnings.warn("Default multi_class will be changed to 'auto' in"
                          " 0.22. Specify the multi_class option to silence "
                          "this warning.", FutureWarning)
    if multi_class == 'auto':
        if solver == 'liblinear':
            multi_class = 'ovr'
        elif n_classes > 2:
            multi_class = 'multinomial'
        else:
            multi_class = 'ovr'
    if multi_class not in ('multinomial', 'ovr'):
        raise ValueError("multi_class should be 'multinomial', 'ovr' or "
                         "'auto'. Got %s." % multi_class)
    if multi_class == 'multinomial' and solver == 'liblinear':
        raise ValueError("Solver %s does not support "
                         "a multinomial backend." % solver)
    return multi_class



def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True,
                             max_iter=100, tol=1e-4, verbose=0,
                             solver='lbfgs', coef=None,
                             class_weight=None, dual=False, penalty='l2',
                             intercept_scaling=1., multi_class='warn',
                             random_state=None, check_input=True,
                             max_squared_sum=None, sample_weight=None):
    """Compute a Logistic Regression model for a list of regularization
    parameters.

    This is an implementation that uses the result of the previous model
    to speed up computations along the set of solutions, making it faster
    than sequentially calling LogisticRegression for the different parameters.
    Note that there will be no speedup with liblinear solver, since it does
    not handle warm-starting.

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    X : array-like or sparse matrix, shape (n_samples, n_features)
        Input data.

    y : array-like, shape (n_samples,) or (n_samples, n_targets)
        Input data, target values.

    pos_class : int, None
        The class with respect to which we perform a one-vs-all fit.
        If None, then it is assumed that the given problem is binary.

    Cs : int | array-like, shape (n_cs,)
        List of values for the regularization parameter or integer specifying
        the number of regularization parameters that should be used. In this
        case, the parameters will be chosen in a logarithmic scale between
        1e-4 and 1e4.

    fit_intercept : bool
        Whether to fit an intercept for the model. In this case the shape of
        the returned array is (n_cs, n_features + 1).

    max_iter : int
        Maximum number of iterations for the solver.

    tol : float
        Stopping criterion. For the newton-cg and lbfgs solvers, the iteration
        will stop when ``max{|g_i | i = 1, ..., n} <= tol``
        where ``g_i`` is the i-th component of the gradient.

    verbose : int
        For the liblinear and lbfgs solvers set verbose to any positive
        number for verbosity.

    solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'}
        Numerical solver to use.

    coef : array-like, shape (n_features,), default None
        Initialization value for coefficients of logistic regression.
        Useless for liblinear solver.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    dual : bool
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    penalty : str, 'l1' or 'l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties.

    intercept_scaling : float, default 1.
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equal to
        intercept_scaling is appended to the instance vector.
        The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    multi_class : str, {'ovr', 'multinomial', 'auto'}, default: 'ovr'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.
        'auto' selects 'ovr' if the data is binary, or if solver='liblinear',
        and otherwise selects 'multinomial'.

        .. versionadded:: 0.18
           Stochastic Average Gradient descent solver for 'multinomial' case.
        .. versionchanged:: 0.20
            Default will change from 'ovr' to 'auto' in 0.22.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag' or
        'liblinear'.

    check_input : bool, default True
        If False, the input arrays X and y will not be checked.

    max_squared_sum : float, default None
        Maximum squared sum of X over samples. Used only in SAG solver.
        If None, it will be computed, going through all the samples.
        The value should be precomputed to speed up cross validation.

    sample_weight : array-like, shape(n_samples,) optional
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1)
        List of coefficients for the Logistic Regression model. If
        fit_intercept is set to True then the second dimension will be
        n_features + 1, where the last item represents the intercept. For
        ``multiclass='multinomial'``, the shape is (n_classes, n_cs,
        n_features) or (n_classes, n_cs, n_features + 1).

    Cs : ndarray
        Grid of Cs used for cross-validation.

    n_iter : array, shape (n_cs,)
        Actual number of iteration for each Cs.

    Notes
    -----
    You might get slightly different results with the solver liblinear than
    with the others since this uses LIBLINEAR which penalizes the intercept.

    .. versionchanged:: 0.19
        The "copy" parameter was removed.
    """
    if isinstance(Cs, numbers.Integral):
        Cs = np.logspace(-4, 4, Cs)

    solver = _check_solver(solver, penalty, dual)

    # Preprocessing.
    if check_input:
        X = check_array(X, accept_sparse='csr', dtype=np.float64,
                        accept_large_sparse=solver != 'liblinear')
        y = check_array(y, ensure_2d=False, dtype=None)
        check_consistent_length(X, y)
    _, n_features = X.shape

    classes = np.unique(y)
    random_state = check_random_state(random_state)

    multi_class = _check_multi_class(multi_class, solver, len(classes))
    if pos_class is None and multi_class != 'multinomial':
        if (classes.size > 2):
            raise ValueError('To fit OvR, use the pos_class argument')
        # np.unique(y) gives labels in sorted order.
        pos_class = classes[1]

    # If sample weights exist, convert them to array (support for lists)
    # and check length
    # Otherwise set them to 1 for all examples
    if sample_weight is not None:
        sample_weight = np.array(sample_weight, dtype=X.dtype, order='C')
        check_consistent_length(y, sample_weight)
    else:
        sample_weight = np.ones(X.shape[0], dtype=X.dtype)

    # If class_weights is a dict (provided by the user), the weights
    # are assigned to the original labels. If it is "balanced", then
    # the class_weights are assigned after masking the labels with a OvR.
    le = LabelEncoder()
    if isinstance(class_weight, dict) or multi_class == 'multinomial':
        class_weight_ = compute_class_weight(class_weight, classes, y)
        sample_weight *= class_weight_[le.fit_transform(y)]

    # For doing a ovr, we need to mask the labels first. for the
    # multinomial case this is not necessary.
    if multi_class == 'ovr':
        w0 = np.zeros(n_features + int(fit_intercept), dtype=X.dtype)
        mask_classes = np.array([-1, 1])
        mask = (y == pos_class)
        y_bin = np.ones(y.shape, dtype=X.dtype)
        y_bin[~mask] = -1.
        # for compute_class_weight

        if class_weight == "balanced":
            class_weight_ = compute_class_weight(class_weight, mask_classes,
                                                 y_bin)
            sample_weight *= class_weight_[le.fit_transform(y_bin)]

    else:
        if solver not in ['sag', 'saga']:
            lbin = LabelBinarizer()
            Y_multi = lbin.fit_transform(y)
            if Y_multi.shape[1] == 1:
                Y_multi = np.hstack([1 - Y_multi, Y_multi])
        else:
            # SAG multinomial solver needs LabelEncoder, not LabelBinarizer
            le = LabelEncoder()
            Y_multi = le.fit_transform(y).astype(X.dtype, copy=False)

        w0 = np.zeros((classes.size, n_features + int(fit_intercept)),
                      order='F', dtype=X.dtype)

    if coef is not None:
        # it must work both giving the bias term and not
        if multi_class == 'ovr':
            if coef.size not in (n_features, w0.size):
                raise ValueError(
                    'Initialization coef is of shape %d, expected shape '
                    '%d or %d' % (coef.size, n_features, w0.size))
            w0[:coef.size] = coef
        else:
            # For binary problems coef.shape[0] should be 1, otherwise it
            # should be classes.size.
            n_classes = classes.size
            if n_classes == 2:
                n_classes = 1

            if (coef.shape[0] != n_classes or
                    coef.shape[1] not in (n_features, n_features + 1)):
                raise ValueError(
                    'Initialization coef is of shape (%d, %d), expected '
                    'shape (%d, %d) or (%d, %d)' % (
                        coef.shape[0], coef.shape[1], classes.size,
                        n_features, classes.size, n_features + 1))

            if n_classes == 1:
                w0[0, :coef.shape[1]] = -coef
                w0[1, :coef.shape[1]] = coef
            else:
                w0[:, :coef.shape[1]] = coef

    if multi_class == 'multinomial':
        # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters.
        if solver in ['lbfgs', 'newton-cg']:
            w0 = w0.ravel()
        target = Y_multi
        if solver == 'lbfgs':
            func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2]
        elif solver == 'newton-cg':
            func = lambda x, *args: _multinomial_loss(x, *args)[0]
            grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1]
            hess = _multinomial_grad_hess
        warm_start_sag = {'coef': w0.T}
    else:
        target = y_bin
        if solver == 'lbfgs':
            func = _logistic_loss_and_grad
        elif solver == 'newton-cg':
            func = _logistic_loss
            grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1]
            hess = _logistic_grad_hess
        warm_start_sag = {'coef': np.expand_dims(w0, axis=1)}

    coefs = list()
    n_iter = np.zeros(len(Cs), dtype=np.int32)
    for i, C in enumerate(Cs):
        if solver == 'lbfgs':
            iprint = [-1, 50, 1, 100, 101][
                np.searchsorted(np.array([0, 1, 2, 3]), verbose)]
            w0, loss, info = optimize.fmin_l_bfgs_b(
                func, w0, fprime=None,
                args=(X, target, 1. / C, sample_weight),
                iprint=iprint, pgtol=tol, maxiter=max_iter)
            if info["warnflag"] == 1:
                warnings.warn("lbfgs failed to converge. Increase the number "
                              "of iterations.", ConvergenceWarning)
            # In scipy <= 1.0.0, nit may exceed maxiter.
            # See https://github.com/scipy/scipy/issues/7854.
            n_iter_i = min(info['nit'], max_iter)
        elif solver == 'newton-cg':
            args = (X, target, 1. / C, sample_weight)
            w0, n_iter_i = newton_cg(hess, func, grad, w0, args=args,
                                     maxiter=max_iter, tol=tol)
        elif solver == 'liblinear':
            coef_, intercept_, n_iter_i, = _fit_liblinear(
                X, target, C, fit_intercept, intercept_scaling, None,
                penalty, dual, verbose, max_iter, tol, random_state,
                sample_weight=sample_weight)
            if fit_intercept:
                w0 = np.concatenate([coef_.ravel(), intercept_])
            else:
                w0 = coef_.ravel()

        elif solver in ['sag', 'saga']:
            if multi_class == 'multinomial':
                target = target.astype(np.float64)
                loss = 'multinomial'
            else:
                loss = 'log'
            if penalty == 'l1':
                alpha = 0.
                beta = 1. / C
            else:
                alpha = 1. / C
                beta = 0.
            w0, n_iter_i, warm_start_sag = sag_solver(
                X, target, sample_weight, loss, alpha,
                beta, max_iter, tol,
                verbose, random_state, False, max_squared_sum, warm_start_sag,
                is_saga=(solver == 'saga'))

        else:
            raise ValueError("solver must be one of {'liblinear', 'lbfgs', "
                             "'newton-cg', 'sag'}, got '%s' instead" % solver)

        if multi_class == 'multinomial':
            n_classes = max(2, classes.size)
            multi_w0 = np.reshape(w0, (n_classes, -1))
            if n_classes == 2:
                multi_w0 = multi_w0[1][np.newaxis, :]
            coefs.append(multi_w0.copy())
        else:
            coefs.append(w0.copy())

        n_iter[i] = n_iter_i

    return np.array(coefs), np.array(Cs), n_iter


# helper function for LogisticCV
def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10,
                          scoring=None, fit_intercept=False,
                          max_iter=100, tol=1e-4, class_weight=None,
                          verbose=0, solver='lbfgs', penalty='l2',
                          dual=False, intercept_scaling=1.,
                          multi_class='warn', random_state=None,
                          max_squared_sum=None, sample_weight=None):
    """Computes scores across logistic_regression_path

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape (n_samples, n_features)
        Training data.

    y : array-like, shape (n_samples,) or (n_samples, n_targets)
        Target labels.

    train : list of indices
        The indices of the train set.

    test : list of indices
        The indices of the test set.

    pos_class : int, None
        The class with respect to which we perform a one-vs-all fit.
        If None, then it is assumed that the given problem is binary.

    Cs : list of floats | int
        Each of the values in Cs describes the inverse of
        regularization strength. If Cs is as an int, then a grid of Cs
        values are chosen in a logarithmic scale between 1e-4 and 1e4.
        If not provided, then a fixed set of values for Cs are used.

    scoring : callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``. For a list of scoring functions
        that can be used, look at :mod:`sklearn.metrics`. The
        default scoring option used is accuracy_score.

    fit_intercept : bool
        If False, then the bias term is set to zero. Else the last
        term of each coef_ gives us the intercept.

    max_iter : int
        Maximum number of iterations for the solver.

    tol : float
        Tolerance for stopping criteria.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    verbose : int
        For the liblinear and lbfgs solvers set verbose to any positive
        number for verbosity.

    solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'}
        Decides which solver to use.

    penalty : str, 'l1' or 'l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties.

    dual : bool
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    intercept_scaling : float, default 1.
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight
        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    multi_class : str, {'ovr', 'multinomial'}
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag' and
        'liblinear'.

    max_squared_sum : float, default None
        Maximum squared sum of X over samples. Used only in SAG solver.
        If None, it will be computed, going through all the samples.
        The value should be precomputed to speed up cross validation.

    sample_weight : array-like, shape(n_samples,) optional
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1)
        List of coefficients for the Logistic Regression model. If
        fit_intercept is set to True then the second dimension will be
        n_features + 1, where the last item represents the intercept.

    Cs : ndarray
        Grid of Cs used for cross-validation.

    scores : ndarray, shape (n_cs,)
        Scores obtained for each Cs.

    n_iter : array, shape(n_cs,)
        Actual number of iteration for each Cs.
    """
    X_train = X[train]
    X_test = X[test]
    y_train = y[train]
    y_test = y[test]

    if sample_weight is not None:
        sample_weight = check_array(sample_weight, ensure_2d=False)
        check_consistent_length(y, sample_weight)

        sample_weight = sample_weight[train]

    coefs, Cs, n_iter = logistic_regression_path(
        X_train, y_train, Cs=Cs, fit_intercept=fit_intercept,
        solver=solver, max_iter=max_iter, class_weight=class_weight,
        pos_class=pos_class, multi_class=multi_class,
        tol=tol, verbose=verbose, dual=dual, penalty=penalty,
        intercept_scaling=intercept_scaling, random_state=random_state,
        check_input=False, max_squared_sum=max_squared_sum,
        sample_weight=sample_weight)

    log_reg = LogisticRegression(solver=solver, multi_class=multi_class)

    # The score method of Logistic Regression has a classes_ attribute.
    if multi_class == 'ovr':
        log_reg.classes_ = np.array([-1, 1])
    elif multi_class == 'multinomial':
        log_reg.classes_ = np.unique(y_train)
    else:
        raise ValueError("multi_class should be either multinomial or ovr, "
                         "got %d" % multi_class)

    if pos_class is not None:
        mask = (y_test == pos_class)
        y_test = np.ones(y_test.shape, dtype=np.float64)
        y_test[~mask] = -1.

    scores = list()

    if isinstance(scoring, six.string_types):
        scoring = get_scorer(scoring)
    for w in coefs:
        if multi_class == 'ovr':
            w = w[np.newaxis, :]
        if fit_intercept:
            log_reg.coef_ = w[:, :-1]
            log_reg.intercept_ = w[:, -1]
        else:
            log_reg.coef_ = w
            log_reg.intercept_ = 0.

        if scoring is None:
            scores.append(log_reg.score(X_test, y_test))
        else:
            scores.append(scoring(log_reg, X_test, y_test))
    return coefs, Cs, np.array(scores), n_iter


class LogisticRegression(BaseEstimator, LinearClassifierMixin,
                         SparseCoefMixin):
    """Logistic Regression (aka logit, MaxEnt) classifier.

    In the multiclass case, the training algorithm uses the one-vs-rest (OvR)
    scheme if the 'multi_class' option is set to 'ovr', and uses the cross-
    entropy loss if the 'multi_class' option is set to 'multinomial'.
    (Currently the 'multinomial' option is supported only by the 'lbfgs',
    'sag' and 'newton-cg' solvers.)

    This class implements regularized logistic regression using the
    'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle
    both dense and sparse input. Use C-ordered arrays or CSR matrices
    containing 64-bit floats for optimal performance; any other input format
    will be converted (and copied).

    The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization
    with primal formulation. The 'liblinear' solver supports both L1 and L2
    regularization, with a dual formulation only for the L2 penalty.

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    penalty : str, 'l1' or 'l2', default: 'l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties.

        .. versionadded:: 0.19
           l1 penalty with SAGA solver (allowing 'multinomial' + L1)

    dual : bool, default: False
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    tol : float, default: 1e-4
        Tolerance for stopping criteria.

    C : float, default: 1.0
        Inverse of regularization strength; must be a positive float.
        Like in support vector machines, smaller values specify stronger
        regularization.

    fit_intercept : bool, default: True
        Specifies if a constant (a.k.a. bias or intercept) should be
        added to the decision function.

    intercept_scaling : float, default 1.
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equal to
        intercept_scaling is appended to the instance vector.
        The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    class_weight : dict or 'balanced', default: None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

        .. versionadded:: 0.17
           *class_weight='balanced'*

    random_state : int, RandomState instance or None, optional, default: None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag' or
        'liblinear'.

    solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
             default: 'liblinear'.

        Algorithm to use in the optimization problem.

        - For small datasets, 'liblinear' is a good choice, whereas 'sag' and
          'saga' are faster for large ones.
        - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs'
          handle multinomial loss; 'liblinear' is limited to one-versus-rest
          schemes.
        - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas
          'liblinear' and 'saga' handle L1 penalty.

        Note that 'sag' and 'saga' fast convergence is only guaranteed on
        features with approximately the same scale. You can
        preprocess the data with a scaler from sklearn.preprocessing.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.
        .. versionchanged:: 0.20
            Default will change from 'liblinear' to 'lbfgs' in 0.22.

    max_iter : int, default: 100
        Useful only for the newton-cg, sag and lbfgs solvers.
        Maximum number of iterations taken for the solvers to converge.

    multi_class : str, {'ovr', 'multinomial', 'auto'}, default: 'ovr'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.
        'auto' selects 'ovr' if the data is binary, or if solver='liblinear',
        and otherwise selects 'multinomial'.

        .. versionadded:: 0.18
           Stochastic Average Gradient descent solver for 'multinomial' case.
        .. versionchanged:: 0.20
            Default will change from 'ovr' to 'auto' in 0.22.

    verbose : int, default: 0
        For the liblinear and lbfgs solvers set verbose to any positive
        number for verbosity.

    warm_start : bool, default: False
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        Useless for liblinear solver. See :term:`the Glossary <warm_start>`.

        .. versionadded:: 0.17
           *warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers.

    n_jobs : int or None, optional (default=None)
        Number of CPU cores used when parallelizing over classes if
        multi_class='ovr'". This parameter is ignored when the ``solver`` is
        set to 'liblinear' regardless of whether 'multi_class' is specified or
        not. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors.
        See :term:`Glossary <n_jobs>` for more details.

    Attributes
    ----------

    classes_ : array, shape (n_classes, )
        A list of class labels known to the classifier.

    coef_ : array, shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function.

        `coef_` is of shape (1, n_features) when the given problem is binary.
        In particular, when `multi_class='multinomial'`, `coef_` corresponds
        to outcome 1 (True) and `-coef_` corresponds to outcome 0 (False).

    intercept_ : array, shape (1,) or (n_classes,)
        Intercept (a.k.a. bias) added to the decision function.

        If `fit_intercept` is set to False, the intercept is set to zero.
        `intercept_` is of shape (1,) when the given problem is binary.
        In particular, when `multi_class='multinomial'`, `intercept_`
        corresponds to outcome 1 (True) and `-intercept_` corresponds to
        outcome 0 (False).

    n_iter_ : array, shape (n_classes,) or (1, )
        Actual number of iterations for all classes. If binary or multinomial,
        it returns only 1 element. For liblinear solver, only the maximum
        number of iteration across all classes is given.

        .. versionchanged:: 0.20

            In SciPy <= 1.0.0 the number of lbfgs iterations may exceed
            ``max_iter``. ``n_iter_`` will now report at most ``max_iter``.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.linear_model import LogisticRegression
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = LogisticRegression(random_state=0, solver='lbfgs',
    ...                          multi_class='multinomial').fit(X, y)
    >>> clf.predict(X[:2, :])
    array([0, 0])
    >>> clf.predict_proba(X[:2, :]) # doctest: +ELLIPSIS
    array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
           [9.7...e-01, 2.8...e-02, ...e-08]])
    >>> clf.score(X, y)
    0.97...

    See also
    --------
    SGDClassifier : incrementally trained logistic regression (when given
        the parameter ``loss="log"``).
    LogisticRegressionCV : Logistic regression with built-in cross validation

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon,
    to have slightly different results for the same input data. If
    that happens, try with a smaller tol parameter.

    Predict output may not match that of standalone liblinear in certain
    cases. See :ref:`differences from liblinear <liblinear_differences>`
    in the narrative documentation.

    References
    ----------

    LIBLINEAR -- A Library for Large Linear Classification
        https://www.csie.ntu.edu.tw/~cjlin/liblinear/

    SAG -- Mark Schmidt, Nicolas Le Roux, and Francis Bach
        Minimizing Finite Sums with the Stochastic Average Gradient
        https://hal.inria.fr/hal-00860051/document

    SAGA -- Defazio, A., Bach F. & Lacoste-Julien S. (2014).
        SAGA: A Fast Incremental Gradient Method With Support
        for Non-Strongly Convex Composite Objectives
        https://arxiv.org/abs/1407.0202

    Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent
        methods for logistic regression and maximum entropy models.
        Machine Learning 85(1-2):41-75.
        https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf
    """

    def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0,
                 fit_intercept=True, intercept_scaling=1, class_weight=None,
                 random_state=None, solver='warn', max_iter=100,
                 multi_class='warn', verbose=0, warm_start=False, n_jobs=None):

        self.penalty = penalty
        self.dual = dual
        self.tol = tol
        self.C = C
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.random_state = random_state
        self.solver = solver
        self.max_iter = max_iter
        self.multi_class = multi_class
        self.verbose = verbose
        self.warm_start = warm_start
        self.n_jobs = n_jobs

    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like, shape (n_samples,) optional
            Array of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

            .. versionadded:: 0.17
               *sample_weight* support to LogisticRegression.

        Returns
        -------
        self : object
        """
        if not isinstance(self.C, numbers.Number) or self.C < 0:
            raise ValueError("Penalty term must be positive; got (C=%r)"
                             % self.C)
        if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:
            raise ValueError("Maximum number of iteration must be positive;"
                             " got (max_iter=%r)" % self.max_iter)
        if not isinstance(self.tol, numbers.Number) or self.tol < 0:
            raise ValueError("Tolerance for stopping criteria must be "
                             "positive; got (tol=%r)" % self.tol)

        solver = _check_solver(self.solver, self.penalty, self.dual)

        if solver in ['newton-cg']:
            _dtype = [np.float64, np.float32]
        else:
            _dtype = np.float64

        X, y = check_X_y(X, y, accept_sparse='csr', dtype=_dtype, order="C",
                         accept_large_sparse=solver != 'liblinear')
        check_classification_targets(y)
        self.classes_ = np.unique(y)
        n_samples, n_features = X.shape

        multi_class = _check_multi_class(self.multi_class, solver,
                                         len(self.classes_))

        if solver == 'liblinear':
            if effective_n_jobs(self.n_jobs) != 1:
                warnings.warn("'n_jobs' > 1 does not have any effect when"
                              " 'solver' is set to 'liblinear'. Got 'n_jobs'"
                              " = {}.".format(effective_n_jobs(self.n_jobs)))
            self.coef_, self.intercept_, n_iter_ = _fit_liblinear(
                X, y, self.C, self.fit_intercept, self.intercept_scaling,
                self.class_weight, self.penalty, self.dual, self.verbose,
                self.max_iter, self.tol, self.random_state,
                sample_weight=sample_weight)
            self.n_iter_ = np.array([n_iter_])
            return self

        if solver in ['sag', 'saga']:
            max_squared_sum = row_norms(X, squared=True).max()
        else:
            max_squared_sum = None

        n_classes = len(self.classes_)
        classes_ = self.classes_
        if n_classes < 2:
            raise ValueError("This solver needs samples of at least 2 classes"
                             " in the data, but the data contains only one"
                             " class: %r" % classes_[0])

        if len(self.classes_) == 2:
            n_classes = 1
            classes_ = classes_[1:]

        if self.warm_start:
            warm_start_coef = getattr(self, 'coef_', None)
        else:
            warm_start_coef = None
        if warm_start_coef is not None and self.fit_intercept:
            warm_start_coef = np.append(warm_start_coef,
                                        self.intercept_[:, np.newaxis],
                                        axis=1)

        self.coef_ = list()
        self.intercept_ = np.zeros(n_classes)

        # Hack so that we iterate only once for the multinomial case.
        if multi_class == 'multinomial':
            classes_ = [None]
            warm_start_coef = [warm_start_coef]
        if warm_start_coef is None:
            warm_start_coef = [None] * n_classes

        path_func = delayed(logistic_regression_path)

        # The SAG solver releases the GIL so it's more efficient to use
        # threads for this solver.
        if solver in ['sag', 'saga']:
            prefer = 'threads'
        else:
            prefer = 'processes'
        fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                               **_joblib_parallel_args(prefer=prefer))(
            path_func(X, y, pos_class=class_, Cs=[self.C],
                      fit_intercept=self.fit_intercept, tol=self.tol,
                      verbose=self.verbose, solver=solver,
                      multi_class=multi_class, max_iter=self.max_iter,
                      class_weight=self.class_weight, check_input=False,
                      random_state=self.random_state, coef=warm_start_coef_,
                      penalty=self.penalty,
                      max_squared_sum=max_squared_sum,
                      sample_weight=sample_weight)
            for class_, warm_start_coef_ in zip(classes_, warm_start_coef))

        fold_coefs_, _, n_iter_ = zip(*fold_coefs_)
        self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0]

        if multi_class == 'multinomial':
            self.coef_ = fold_coefs_[0][0]
        else:
            self.coef_ = np.asarray(fold_coefs_)
            self.coef_ = self.coef_.reshape(n_classes, n_features +
                                            int(self.fit_intercept))

        if self.fit_intercept:
            self.intercept_ = self.coef_[:, -1]
            self.coef_ = self.coef_[:, :-1]

        return self

    def predict_proba(self, X):
        """Probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        For a multi_class problem, if multi_class is set to be "multinomial"
        the softmax function is used to find the predicted probability of
        each class.
        Else use a one-vs-rest approach, i.e calculate the probability
        of each class assuming it to be positive using the logistic function.
        and normalize these values across all the classes.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        T : array-like, shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in the model,
            where classes are ordered as they are in ``self.classes_``.
        """
        if not hasattr(self, "coef_"):
            raise NotFittedError("Call fit before prediction")

        ovr = (self.multi_class in ["ovr", "warn"] or
               (self.multi_class == 'auto' and (self.classes_.size <= 2 or
                                                self.solver == 'liblinear')))
        if ovr:
            return super(LogisticRegression, self)._predict_proba_lr(X)
        else:
            decision = self.decision_function(X)
            if decision.ndim == 1:
                # Workaround for multi_class="multinomial" and binary outcomes
                # which requires softmax prediction with only a 1D decision.
                decision_2d = np.c_[-decision, decision]
            else:
                decision_2d = decision
            return softmax(decision_2d, copy=False)

    def predict_log_proba(self, X):
        """Log of probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        T : array-like, shape = [n_samples, n_classes]
            Returns the log-probability of the sample for each class in the
            model, where classes are ordered as they are in ``self.classes_``.
        """
        return np.log(self.predict_proba(X))


class LogisticRegressionCV(LogisticRegression, BaseEstimator,
                           LinearClassifierMixin):
    """Logistic Regression CV (aka logit, MaxEnt) classifier.

    See glossary entry for :term:`cross-validation estimator`.

    This class implements logistic regression using liblinear, newton-cg, sag
    of lbfgs optimizer. The newton-cg, sag and lbfgs solvers support only L2
    regularization with primal formulation. The liblinear solver supports both
    L1 and L2 regularization, with a dual formulation only for the L2 penalty.

    For the grid of Cs values (that are set by default to be ten values in
    a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is
    selected by the cross-validator StratifiedKFold, but it can be changed
    using the cv parameter. In the case of newton-cg and lbfgs solvers,
    we warm start along the path i.e guess the initial coefficients of the
    present fit to be the coefficients got after convergence in the previous
    fit, so it is supposed to be faster for high-dimensional dense data.

    For a multiclass problem, the hyperparameters for each class are computed
    using the best scores got by doing a one-vs-rest in parallel across all
    folds and classes. Hence this is not the true multinomial loss.

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    Cs : list of floats | int
        Each of the values in Cs describes the inverse of regularization
        strength. If Cs is as an int, then a grid of Cs values are chosen
        in a logarithmic scale between 1e-4 and 1e4.
        Like in support vector machines, smaller values specify stronger
        regularization.

    fit_intercept : bool, default: True
        Specifies if a constant (a.k.a. bias or intercept) should be
        added to the decision function.

    cv : integer or cross-validation generator, default: None
        The default cross-validation generator used is Stratified K-Folds.
        If an integer is provided, then it is the number of folds used.
        See the module :mod:`sklearn.model_selection` module for the
        list of possible cross-validation objects.

        .. versionchanged:: 0.20
            ``cv`` default value if None will change from 3-fold to 5-fold
            in v0.22.

    dual : bool
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    penalty : str, 'l1' or 'l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties.

    scoring : string, callable, or None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``. For a list of scoring functions
        that can be used, look at :mod:`sklearn.metrics`. The
        default scoring option used is 'accuracy'.

    solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
             default: 'lbfgs'.

        Algorithm to use in the optimization problem.

        - For small datasets, 'liblinear' is a good choice, whereas 'sag' and
          'saga' are faster for large ones.
        - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs'
          handle multinomial loss; 'liblinear' is limited to one-versus-rest
          schemes.
        - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas
          'liblinear' and 'saga' handle L1 penalty.
        - 'liblinear' might be slower in LogisticRegressionCV because it does
          not handle warm-starting.

        Note that 'sag' and 'saga' fast convergence is only guaranteed on
        features with approximately the same scale. You can preprocess the data
        with a scaler from sklearn.preprocessing.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    tol : float, optional
        Tolerance for stopping criteria.

    max_iter : int, optional
        Maximum number of iterations of the optimization algorithm.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

        .. versionadded:: 0.17
           class_weight == 'balanced'

    n_jobs : int or None, optional (default=None)
        Number of CPU cores used during the cross-validation loop.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int
        For the 'liblinear', 'sag' and 'lbfgs' solvers set verbose to any
        positive number for verbosity.

    refit : bool
        If set to True, the scores are averaged across all folds, and the
        coefs and the C that corresponds to the best score is taken, and a
        final refit is done using these parameters.
        Otherwise the coefs, intercepts and C that correspond to the
        best scores across folds are averaged.

    intercept_scaling : float, default 1.
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equal to
        intercept_scaling is appended to the instance vector.
        The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    multi_class : str, {'ovr', 'multinomial', 'auto'}, default: 'ovr'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.
        'auto' selects 'ovr' if the data is binary, or if solver='liblinear',
        and otherwise selects 'multinomial'.

        .. versionadded:: 0.18
           Stochastic Average Gradient descent solver for 'multinomial' case.
        .. versionchanged:: 0.20
            Default will change from 'ovr' to 'auto' in 0.22.

    random_state : int, RandomState instance or None, optional, default None
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    classes_ : array, shape (n_classes, )
        A list of class labels known to the classifier.

    coef_ : array, shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function.

        `coef_` is of shape (1, n_features) when the given problem
        is binary.

    intercept_ : array, shape (1,) or (n_classes,)
        Intercept (a.k.a. bias) added to the decision function.

        If `fit_intercept` is set to False, the intercept is set to zero.
        `intercept_` is of shape(1,) when the problem is binary.

    Cs_ : array
        Array of C i.e. inverse of regularization parameter values used
        for cross-validation.

    coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \
                   ``(n_folds, len(Cs_), n_features + 1)``
        dict with classes as the keys, and the path of coefficients obtained
        during cross-validating across each fold and then across each Cs
        after doing an OvR for the corresponding class as values.
        If the 'multi_class' option is set to 'multinomial', then
        the coefs_paths are the coefficients corresponding to each class.
        Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or
        ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the
        intercept is fit or not.

    scores_ : dict
        dict with classes as the keys, and the values as the
        grid of scores obtained during cross-validating each fold, after doing
        an OvR for the corresponding class. If the 'multi_class' option
        given is 'multinomial' then the same scores are repeated across
        all classes, since this is the multinomial class.
        Each dict value has shape (n_folds, len(Cs))

    C_ : array, shape (n_classes,) or (n_classes - 1,)
        Array of C that maps to the best scores across every class. If refit is
        set to False, then for each class, the best C is the average of the
        C's that correspond to the best scores for each fold.
        `C_` is of shape(n_classes,) when the problem is binary.

    n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)
        Actual number of iterations for all classes, folds and Cs.
        In the binary or multinomial cases, the first dimension is equal to 1.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.linear_model import LogisticRegressionCV
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = LogisticRegressionCV(cv=5, random_state=0,
    ...                            multi_class='multinomial').fit(X, y)
    >>> clf.predict(X[:2, :])
    array([0, 0])
    >>> clf.predict_proba(X[:2, :]).shape
    (2, 3)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.98...

    See also
    --------
    LogisticRegression

    """
    def __init__(self, Cs=10, fit_intercept=True, cv='warn', dual=False,
                 penalty='l2', scoring=None, solver='lbfgs', tol=1e-4,
                 max_iter=100, class_weight=None, n_jobs=None, verbose=0,
                 refit=True, intercept_scaling=1., multi_class='warn',
                 random_state=None):
        self.Cs = Cs
        self.fit_intercept = fit_intercept
        self.cv = cv
        self.dual = dual
        self.penalty = penalty
        self.scoring = scoring
        self.tol = tol
        self.max_iter = max_iter
        self.class_weight = class_weight
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.solver = solver
        self.refit = refit
        self.intercept_scaling = intercept_scaling
        self.multi_class = multi_class
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like, shape (n_samples,) optional
            Array of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

        Returns
        -------
        self : object
        """
        solver = _check_solver(self.solver, self.penalty, self.dual)

        if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:
            raise ValueError("Maximum number of iteration must be positive;"
                             " got (max_iter=%r)" % self.max_iter)
        if not isinstance(self.tol, numbers.Number) or self.tol < 0:
            raise ValueError("Tolerance for stopping criteria must be "
                             "positive; got (tol=%r)" % self.tol)

        X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64,
                         order="C",
                         accept_large_sparse=solver != 'liblinear')
        check_classification_targets(y)

        class_weight = self.class_weight

        # Encode for string labels
        label_encoder = LabelEncoder().fit(y)
        y = label_encoder.transform(y)
        if isinstance(class_weight, dict):
            class_weight = dict((label_encoder.transform([cls])[0], v)
                                for cls, v in class_weight.items())

        # The original class labels
        classes = self.classes_ = label_encoder.classes_
        encoded_labels = label_encoder.transform(label_encoder.classes_)

        multi_class = _check_multi_class(self.multi_class, solver,
                                         len(classes))

        if solver in ['sag', 'saga']:
            max_squared_sum = row_norms(X, squared=True).max()
        else:
            max_squared_sum = None

        # init cross-validation generator
        cv = check_cv(self.cv, y, classifier=True)
        folds = list(cv.split(X, y))

        # Use the label encoded classes
        n_classes = len(encoded_labels)

        if n_classes < 2:
            raise ValueError("This solver needs samples of at least 2 classes"
                             " in the data, but the data contains only one"
                             " class: %r" % classes[0])

        if n_classes == 2:
            # OvR in case of binary problems is as good as fitting
            # the higher label
            n_classes = 1
            encoded_labels = encoded_labels[1:]
            classes = classes[1:]

        # We need this hack to iterate only once over labels, in the case of
        # multi_class = multinomial, without changing the value of the labels.
        if multi_class == 'multinomial':
            iter_encoded_labels = iter_classes = [None]
        else:
            iter_encoded_labels = encoded_labels
            iter_classes = classes

        # compute the class weights for the entire dataset y
        if class_weight == "balanced":
            class_weight = compute_class_weight(class_weight,
                                                np.arange(len(self.classes_)),
                                                y)
            class_weight = dict(enumerate(class_weight))

        path_func = delayed(_log_reg_scoring_path)

        # The SAG solver releases the GIL so it's more efficient to use
        # threads for this solver.
        if self.solver in ['sag', 'saga']:
            prefer = 'threads'
        else:
            prefer = 'processes'
        fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                               **_joblib_parallel_args(prefer=prefer))(
            path_func(X, y, train, test, pos_class=label, Cs=self.Cs,
                      fit_intercept=self.fit_intercept, penalty=self.penalty,
                      dual=self.dual, solver=solver, tol=self.tol,
                      max_iter=self.max_iter, verbose=self.verbose,
                      class_weight=class_weight, scoring=self.scoring,
                      multi_class=multi_class,
                      intercept_scaling=self.intercept_scaling,
                      random_state=self.random_state,
                      max_squared_sum=max_squared_sum,
                      sample_weight=sample_weight
                      )
            for label in iter_encoded_labels
            for train, test in folds)

        if multi_class == 'multinomial':
            multi_coefs_paths, Cs, multi_scores, n_iter_ = zip(*fold_coefs_)
            multi_coefs_paths = np.asarray(multi_coefs_paths)
            multi_scores = np.asarray(multi_scores)

            # This is just to maintain API similarity between the ovr and
            # multinomial option.
            # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features
            # we need it to be n_classes X len(Cs) X n_folds X n_features
            # to be similar to "ovr".
            coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0)

            # Multinomial has a true score across all labels. Hence the
            # shape is n_folds X len(Cs). We need to repeat this score
            # across all labels for API similarity.
            scores = np.tile(multi_scores, (n_classes, 1, 1))
            self.Cs_ = Cs[0]
            self.n_iter_ = np.reshape(n_iter_, (1, len(folds),
                                                len(self.Cs_)))

        else:
            coefs_paths, Cs, scores, n_iter_ = zip(*fold_coefs_)
            self.Cs_ = Cs[0]
            coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds),
                                                   len(self.Cs_), -1))
            self.n_iter_ = np.reshape(n_iter_, (n_classes, len(folds),
                                                len(self.Cs_)))

        self.coefs_paths_ = dict(zip(classes, coefs_paths))
        scores = np.reshape(scores, (n_classes, len(folds), -1))
        self.scores_ = dict(zip(classes, scores))

        self.C_ = list()
        self.coef_ = np.empty((n_classes, X.shape[1]))
        self.intercept_ = np.zeros(n_classes)

        # hack to iterate only once for multinomial case.
        if multi_class == 'multinomial':
            scores = multi_scores
            coefs_paths = multi_coefs_paths

        for index, (cls, encoded_label) in enumerate(
                zip(iter_classes, iter_encoded_labels)):

            if multi_class == 'ovr':
                # The scores_ / coefs_paths_ dict have unencoded class
                # labels as their keys
                scores = self.scores_[cls]
                coefs_paths = self.coefs_paths_[cls]

            if self.refit:
                best_index = scores.sum(axis=0).argmax()

                C_ = self.Cs_[best_index]
                self.C_.append(C_)
                if multi_class == 'multinomial':
                    coef_init = np.mean(coefs_paths[:, best_index, :, :],
                                        axis=0)
                else:
                    coef_init = np.mean(coefs_paths[:, best_index, :], axis=0)

                # Note that y is label encoded and hence pos_class must be
                # the encoded label / None (for 'multinomial')
                w, _, _ = logistic_regression_path(
                    X, y, pos_class=encoded_label, Cs=[C_], solver=solver,
                    fit_intercept=self.fit_intercept, coef=coef_init,
                    max_iter=self.max_iter, tol=self.tol,
                    penalty=self.penalty,
                    class_weight=class_weight,
                    multi_class=multi_class,
                    verbose=max(0, self.verbose - 1),
                    random_state=self.random_state,
                    check_input=False, max_squared_sum=max_squared_sum,
                    sample_weight=sample_weight)
                w = w[0]

            else:
                # Take the best scores across every fold and the average of all
                # coefficients corresponding to the best scores.
                best_indices = np.argmax(scores, axis=1)
                w = np.mean([coefs_paths[i][best_indices[i]]
                             for i in range(len(folds))], axis=0)
                self.C_.append(np.mean(self.Cs_[best_indices]))

            if multi_class == 'multinomial':
                self.C_ = np.tile(self.C_, n_classes)
                self.coef_ = w[:, :X.shape[1]]
                if self.fit_intercept:
                    self.intercept_ = w[:, -1]
            else:
                self.coef_[index] = w[: X.shape[1]]
                if self.fit_intercept:
                    self.intercept_[index] = w[-1]

        self.C_ = np.asarray(self.C_)
        return self

    def score(self, X, y, sample_weight=None):
        """Returns the score using the `scoring` option on the given
        test data and labels.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Test samples.

        y : array-like, shape = (n_samples,)
            True labels for X.

        sample_weight : array-like, shape = [n_samples], optional
            Sample weights.

        Returns
        -------
        score : float
            Score of self.predict(X) wrt. y.

        """

        if self.scoring is not None:
            warnings.warn("The long-standing behavior to use the "
                          "accuracy score has changed. The scoring "
                          "parameter is now used. "
                          "This warning will disappear in version 0.22.",
                          ChangedBehaviorWarning)
        scoring = self.scoring or 'accuracy'
        if isinstance(scoring, six.string_types):
            scoring = get_scorer(scoring)

        return scoring(self, X, y, sample_weight=sample_weight)