File: ransac.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (492 lines) | stat: -rw-r--r-- 18,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# coding: utf-8

# Author: Johannes Schönberger
#
# License: BSD 3 clause

import numpy as np
import warnings

from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone
from ..utils import check_random_state, check_array, check_consistent_length
from ..utils.random import sample_without_replacement
from ..utils.validation import check_is_fitted
from .base import LinearRegression
from ..utils.validation import has_fit_parameter
from ..exceptions import ConvergenceWarning

_EPSILON = np.spacing(1)


def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability):
    """Determine number trials such that at least one outlier-free subset is
    sampled for the given inlier/outlier ratio.

    Parameters
    ----------
    n_inliers : int
        Number of inliers in the data.

    n_samples : int
        Total number of samples in the data.

    min_samples : int
        Minimum number of samples chosen randomly from original data.

    probability : float
        Probability (confidence) that one outlier-free sample is generated.

    Returns
    -------
    trials : int
        Number of trials.

    """
    inlier_ratio = n_inliers / float(n_samples)
    nom = max(_EPSILON, 1 - probability)
    denom = max(_EPSILON, 1 - inlier_ratio ** min_samples)
    if nom == 1:
        return 0
    if denom == 1:
        return float('inf')
    return abs(float(np.ceil(np.log(nom) / np.log(denom))))


class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin):
    """RANSAC (RANdom SAmple Consensus) algorithm.

    RANSAC is an iterative algorithm for the robust estimation of parameters
    from a subset of inliers from the complete data set. More information can
    be found in the general documentation of linear models.

    A detailed description of the algorithm can be found in the documentation
    of the ``linear_model`` sub-package.

    Read more in the :ref:`User Guide <ransac_regression>`.

    Parameters
    ----------
    base_estimator : object, optional
        Base estimator object which implements the following methods:

         * `fit(X, y)`: Fit model to given training data and target values.
         * `score(X, y)`: Returns the mean accuracy on the given test data,
           which is used for the stop criterion defined by `stop_score`.
           Additionally, the score is used to decide which of two equally
           large consensus sets is chosen as the better one.
         * `predict(X)`: Returns predicted values using the linear model,
           which is used to compute residual error using loss function.

        If `base_estimator` is None, then
        ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for
        target values of dtype float.

        Note that the current implementation only supports regression
        estimators.

    min_samples : int (>= 1) or float ([0, 1]), optional
        Minimum number of samples chosen randomly from original data. Treated
        as an absolute number of samples for `min_samples >= 1`, treated as a
        relative number `ceil(min_samples * X.shape[0]`) for
        `min_samples < 1`. This is typically chosen as the minimal number of
        samples necessary to estimate the given `base_estimator`. By default a
        ``sklearn.linear_model.LinearRegression()`` estimator is assumed and
        `min_samples` is chosen as ``X.shape[1] + 1``.

    residual_threshold : float, optional
        Maximum residual for a data sample to be classified as an inlier.
        By default the threshold is chosen as the MAD (median absolute
        deviation) of the target values `y`.

    is_data_valid : callable, optional
        This function is called with the randomly selected data before the
        model is fitted to it: `is_data_valid(X, y)`. If its return value is
        False the current randomly chosen sub-sample is skipped.

    is_model_valid : callable, optional
        This function is called with the estimated model and the randomly
        selected data: `is_model_valid(model, X, y)`. If its return value is
        False the current randomly chosen sub-sample is skipped.
        Rejecting samples with this function is computationally costlier than
        with `is_data_valid`. `is_model_valid` should therefore only be used if
        the estimated model is needed for making the rejection decision.

    max_trials : int, optional
        Maximum number of iterations for random sample selection.

    max_skips : int, optional
        Maximum number of iterations that can be skipped due to finding zero
        inliers or invalid data defined by ``is_data_valid`` or invalid models
        defined by ``is_model_valid``.

        .. versionadded:: 0.19

    stop_n_inliers : int, optional
        Stop iteration if at least this number of inliers are found.

    stop_score : float, optional
        Stop iteration if score is greater equal than this threshold.

    stop_probability : float in range [0, 1], optional
        RANSAC iteration stops if at least one outlier-free set of the training
        data is sampled in RANSAC. This requires to generate at least N
        samples (iterations)::

            N >= log(1 - probability) / log(1 - e**m)

        where the probability (confidence) is typically set to high value such
        as 0.99 (the default) and e is the current fraction of inliers w.r.t.
        the total number of samples.

    loss : string, callable, optional, default "absolute_loss"
        String inputs, "absolute_loss" and "squared_loss" are supported which
        find the absolute loss and squared loss per sample
        respectively.

        If ``loss`` is a callable, then it should be a function that takes
        two arrays as inputs, the true and predicted value and returns a 1-D
        array with the i-th value of the array corresponding to the loss
        on ``X[i]``.

        If the loss on a sample is greater than the ``residual_threshold``,
        then this sample is classified as an outlier.

    random_state : int, RandomState instance or None, optional, default None
        The generator used to initialize the centers.  If int, random_state is
        the seed used by the random number generator; If RandomState instance,
        random_state is the random number generator; If None, the random number
        generator is the RandomState instance used by `np.random`.

    Attributes
    ----------
    estimator_ : object
        Best fitted model (copy of the `base_estimator` object).

    n_trials_ : int
        Number of random selection trials until one of the stop criteria is
        met. It is always ``<= max_trials``.

    inlier_mask_ : bool array of shape [n_samples]
        Boolean mask of inliers classified as ``True``.

    n_skips_no_inliers_ : int
        Number of iterations skipped due to finding zero inliers.

        .. versionadded:: 0.19

    n_skips_invalid_data_ : int
        Number of iterations skipped due to invalid data defined by
        ``is_data_valid``.

        .. versionadded:: 0.19

    n_skips_invalid_model_ : int
        Number of iterations skipped due to an invalid model defined by
        ``is_model_valid``.

        .. versionadded:: 0.19

    Examples
    --------
    >>> from sklearn.linear_model import RANSACRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(
    ...     n_samples=200, n_features=2, noise=4.0, random_state=0)
    >>> reg = RANSACRegressor(random_state=0).fit(X, y)
    >>> reg.score(X, y) # doctest: +ELLIPSIS
    0.9885...
    >>> reg.predict(X[:1,])
    array([-31.9417...])

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/RANSAC
    .. [2] https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
    .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
    """

    def __init__(self, base_estimator=None, min_samples=None,
                 residual_threshold=None, is_data_valid=None,
                 is_model_valid=None, max_trials=100, max_skips=np.inf,
                 stop_n_inliers=np.inf, stop_score=np.inf,
                 stop_probability=0.99, loss='absolute_loss',
                 random_state=None):

        self.base_estimator = base_estimator
        self.min_samples = min_samples
        self.residual_threshold = residual_threshold
        self.is_data_valid = is_data_valid
        self.is_model_valid = is_model_valid
        self.max_trials = max_trials
        self.max_skips = max_skips
        self.stop_n_inliers = stop_n_inliers
        self.stop_score = stop_score
        self.stop_probability = stop_probability
        self.random_state = random_state
        self.loss = loss

    def fit(self, X, y, sample_weight=None):
        """Fit estimator using RANSAC algorithm.

        Parameters
        ----------
        X : array-like or sparse matrix, shape [n_samples, n_features]
            Training data.

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values.

        sample_weight : array-like, shape = [n_samples]
            Individual weights for each sample
            raises error if sample_weight is passed and base_estimator
            fit method does not support it.

        Raises
        ------
        ValueError
            If no valid consensus set could be found. This occurs if
            `is_data_valid` and `is_model_valid` return False for all
            `max_trials` randomly chosen sub-samples.

        """
        X = check_array(X, accept_sparse='csr')
        y = check_array(y, ensure_2d=False)
        check_consistent_length(X, y)

        if self.base_estimator is not None:
            base_estimator = clone(self.base_estimator)
        else:
            base_estimator = LinearRegression()

        if self.min_samples is None:
            # assume linear model by default
            min_samples = X.shape[1] + 1
        elif 0 < self.min_samples < 1:
            min_samples = np.ceil(self.min_samples * X.shape[0])
        elif self.min_samples >= 1:
            if self.min_samples % 1 != 0:
                raise ValueError("Absolute number of samples must be an "
                                 "integer value.")
            min_samples = self.min_samples
        else:
            raise ValueError("Value for `min_samples` must be scalar and "
                             "positive.")
        if min_samples > X.shape[0]:
            raise ValueError("`min_samples` may not be larger than number "
                             "of samples: n_samples = %d." % (X.shape[0]))

        if self.stop_probability < 0 or self.stop_probability > 1:
            raise ValueError("`stop_probability` must be in range [0, 1].")

        if self.residual_threshold is None:
            # MAD (median absolute deviation)
            residual_threshold = np.median(np.abs(y - np.median(y)))
        else:
            residual_threshold = self.residual_threshold

        if self.loss == "absolute_loss":
            if y.ndim == 1:
                loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)
            else:
                loss_function = lambda \
                    y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1)

        elif self.loss == "squared_loss":
            if y.ndim == 1:
                loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2
            else:
                loss_function = lambda \
                    y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1)

        elif callable(self.loss):
            loss_function = self.loss

        else:
            raise ValueError(
                "loss should be 'absolute_loss', 'squared_loss' or a callable."
                "Got %s. " % self.loss)


        random_state = check_random_state(self.random_state)

        try:  # Not all estimator accept a random_state
            base_estimator.set_params(random_state=random_state)
        except ValueError:
            pass

        estimator_fit_has_sample_weight = has_fit_parameter(base_estimator,
                                                            "sample_weight")
        estimator_name = type(base_estimator).__name__
        if (sample_weight is not None and not
                estimator_fit_has_sample_weight):
            raise ValueError("%s does not support sample_weight. Samples"
                             " weights are only used for the calibration"
                             " itself." % estimator_name)
        if sample_weight is not None:
            sample_weight = np.asarray(sample_weight)

        n_inliers_best = 1
        score_best = -np.inf
        inlier_mask_best = None
        X_inlier_best = None
        y_inlier_best = None
        self.n_skips_no_inliers_ = 0
        self.n_skips_invalid_data_ = 0
        self.n_skips_invalid_model_ = 0

        # number of data samples
        n_samples = X.shape[0]
        sample_idxs = np.arange(n_samples)

        n_samples, _ = X.shape

        self.n_trials_ = 0
        max_trials = self.max_trials
        while self.n_trials_ < max_trials:
            self.n_trials_ += 1

            if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
                    self.n_skips_invalid_model_) > self.max_skips:
                break

            # choose random sample set
            subset_idxs = sample_without_replacement(n_samples, min_samples,
                                                     random_state=random_state)
            X_subset = X[subset_idxs]
            y_subset = y[subset_idxs]

            # check if random sample set is valid
            if (self.is_data_valid is not None
                    and not self.is_data_valid(X_subset, y_subset)):
                self.n_skips_invalid_data_ += 1
                continue

            # fit model for current random sample set
            if sample_weight is None:
                base_estimator.fit(X_subset, y_subset)
            else:
                base_estimator.fit(X_subset, y_subset,
                                   sample_weight=sample_weight[subset_idxs])

            # check if estimated model is valid
            if (self.is_model_valid is not None and not
                    self.is_model_valid(base_estimator, X_subset, y_subset)):
                self.n_skips_invalid_model_ += 1
                continue

            # residuals of all data for current random sample model
            y_pred = base_estimator.predict(X)
            residuals_subset = loss_function(y, y_pred)

            # classify data into inliers and outliers
            inlier_mask_subset = residuals_subset < residual_threshold
            n_inliers_subset = np.sum(inlier_mask_subset)

            # less inliers -> skip current random sample
            if n_inliers_subset < n_inliers_best:
                self.n_skips_no_inliers_ += 1
                continue

            # extract inlier data set
            inlier_idxs_subset = sample_idxs[inlier_mask_subset]
            X_inlier_subset = X[inlier_idxs_subset]
            y_inlier_subset = y[inlier_idxs_subset]

            # score of inlier data set
            score_subset = base_estimator.score(X_inlier_subset,
                                                y_inlier_subset)

            # same number of inliers but worse score -> skip current random
            # sample
            if (n_inliers_subset == n_inliers_best
                    and score_subset < score_best):
                continue

            # save current random sample as best sample
            n_inliers_best = n_inliers_subset
            score_best = score_subset
            inlier_mask_best = inlier_mask_subset
            X_inlier_best = X_inlier_subset
            y_inlier_best = y_inlier_subset

            max_trials = min(
                max_trials,
                _dynamic_max_trials(n_inliers_best, n_samples,
                                    min_samples, self.stop_probability))

            # break if sufficient number of inliers or score is reached
            if n_inliers_best >= self.stop_n_inliers or \
                            score_best >= self.stop_score:
                break

        # if none of the iterations met the required criteria
        if inlier_mask_best is None:
            if ((self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
                    self.n_skips_invalid_model_) > self.max_skips):
                raise ValueError(
                    "RANSAC skipped more iterations than `max_skips` without"
                    " finding a valid consensus set. Iterations were skipped"
                    " because each randomly chosen sub-sample failed the"
                    " passing criteria. See estimator attributes for"
                    " diagnostics (n_skips*).")
            else:
                raise ValueError(
                    "RANSAC could not find a valid consensus set. All"
                    " `max_trials` iterations were skipped because each"
                    " randomly chosen sub-sample failed the passing criteria."
                    " See estimator attributes for diagnostics (n_skips*).")
        else:
            if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
                    self.n_skips_invalid_model_) > self.max_skips:
                warnings.warn("RANSAC found a valid consensus set but exited"
                              " early due to skipping more iterations than"
                              " `max_skips`. See estimator attributes for"
                              " diagnostics (n_skips*).",
                              ConvergenceWarning)

        # estimate final model using all inliers
        base_estimator.fit(X_inlier_best, y_inlier_best)

        self.estimator_ = base_estimator
        self.inlier_mask_ = inlier_mask_best
        return self

    def predict(self, X):
        """Predict using the estimated model.

        This is a wrapper for `estimator_.predict(X)`.

        Parameters
        ----------
        X : numpy array of shape [n_samples, n_features]

        Returns
        -------
        y : array, shape = [n_samples] or [n_samples, n_targets]
            Returns predicted values.
        """
        check_is_fitted(self, 'estimator_')

        return self.estimator_.predict(X)

    def score(self, X, y):
        """Returns the score of the prediction.

        This is a wrapper for `estimator_.score(X, y)`.

        Parameters
        ----------
        X : numpy array or sparse matrix of shape [n_samples, n_features]
            Training data.

        y : array, shape = [n_samples] or [n_samples, n_targets]
            Target values.

        Returns
        -------
        z : float
            Score of the prediction.
        """
        check_is_fitted(self, 'estimator_')

        return self.estimator_.score(X, y)