1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
"""Solvers for Ridge and LogisticRegression using SAG algorithm"""
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
#
# License: BSD 3 clause
import warnings
import numpy as np
from .base import make_dataset
from .sag_fast import sag
from ..exceptions import ConvergenceWarning
from ..utils import check_array
from ..utils.extmath import row_norms
def get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept,
n_samples=None,
is_saga=False):
"""Compute automatic step size for SAG solver
The step size is set to 1 / (alpha_scaled + L + fit_intercept) where L is
the max sum of squares for over all samples.
Parameters
----------
max_squared_sum : float
Maximum squared sum of X over samples.
alpha_scaled : float
Constant that multiplies the regularization term, scaled by
1. / n_samples, the number of samples.
loss : string, in {"log", "squared"}
The loss function used in SAG solver.
fit_intercept : bool
Specifies if a constant (a.k.a. bias or intercept) will be
added to the decision function.
n_samples : int, optional
Number of rows in X. Useful if is_saga=True.
is_saga : boolean, optional
Whether to return step size for the SAGA algorithm or the SAG
algorithm.
Returns
-------
step_size : float
Step size used in SAG solver.
References
----------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
Defazio, A., Bach F. & Lacoste-Julien S. (2014).
SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives
https://arxiv.org/abs/1407.0202
"""
if loss in ('log', 'multinomial'):
L = (0.25 * (max_squared_sum + int(fit_intercept)) + alpha_scaled)
elif loss == 'squared':
# inverse Lipschitz constant for squared loss
L = max_squared_sum + int(fit_intercept) + alpha_scaled
else:
raise ValueError("Unknown loss function for SAG solver, got %s "
"instead of 'log' or 'squared'" % loss)
if is_saga:
# SAGA theoretical step size is 1/3L or 1 / (2 * (L + mu n))
# See Defazio et al. 2014
mun = min(2 * n_samples * alpha_scaled, L)
step = 1. / (2 * L + mun)
else:
# SAG theoretical step size is 1/16L but it is recommended to use 1 / L
# see http://www.birs.ca//workshops//2014/14w5003/files/schmidt.pdf,
# slide 65
step = 1. / L
return step
def sag_solver(X, y, sample_weight=None, loss='log', alpha=1., beta=0.,
max_iter=1000, tol=0.001, verbose=0, random_state=None,
check_input=True, max_squared_sum=None,
warm_start_mem=None,
is_saga=False):
"""SAG solver for Ridge and LogisticRegression
SAG stands for Stochastic Average Gradient: the gradient of the loss is
estimated each sample at a time and the model is updated along the way with
a constant learning rate.
IMPORTANT NOTE: 'sag' solver converges faster on columns that are on the
same scale. You can normalize the data by using
sklearn.preprocessing.StandardScaler on your data before passing it to the
fit method.
This implementation works with data represented as dense numpy arrays or
sparse scipy arrays of floating point values for the features. It will
fit the data according to squared loss or log loss.
The regularizer is a penalty added to the loss function that shrinks model
parameters towards the zero vector using the squared euclidean norm L2.
.. versionadded:: 0.17
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data
y : numpy array, shape (n_samples,)
Target values. With loss='multinomial', y must be label encoded
(see preprocessing.LabelEncoder).
sample_weight : array-like, shape (n_samples,), optional
Weights applied to individual samples (1. for unweighted).
loss : 'log' | 'squared' | 'multinomial'
Loss function that will be optimized:
-'log' is the binary logistic loss, as used in LogisticRegression.
-'squared' is the squared loss, as used in Ridge.
-'multinomial' is the multinomial logistic loss, as used in
LogisticRegression.
.. versionadded:: 0.18
*loss='multinomial'*
alpha : float, optional
L2 regularization term in the objective function
``(0.5 * alpha * || W ||_F^2)``. Defaults to 1.
beta : float, optional
L1 regularization term in the objective function
``(beta * || W ||_1)``. Only applied if ``is_saga`` is set to True.
Defaults to 0.
max_iter : int, optional
The max number of passes over the training data if the stopping
criteria is not reached. Defaults to 1000.
tol : double, optional
The stopping criteria for the weights. The iterations will stop when
max(change in weights) / max(weights) < tol. Defaults to .001
verbose : integer, optional
The verbosity level.
random_state : int, RandomState instance or None, optional, default None
The seed of the pseudo random number generator to use when shuffling
the data. If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState
instance used by `np.random`.
check_input : bool, default True
If False, the input arrays X and y will not be checked.
max_squared_sum : float, default None
Maximum squared sum of X over samples. If None, it will be computed,
going through all the samples. The value should be precomputed
to speed up cross validation.
warm_start_mem : dict, optional
The initialization parameters used for warm starting. Warm starting is
currently used in LogisticRegression but not in Ridge.
It contains:
- 'coef': the weight vector, with the intercept in last line
if the intercept is fitted.
- 'gradient_memory': the scalar gradient for all seen samples.
- 'sum_gradient': the sum of gradient over all seen samples,
for each feature.
- 'intercept_sum_gradient': the sum of gradient over all seen
samples, for the intercept.
- 'seen': array of boolean describing the seen samples.
- 'num_seen': the number of seen samples.
is_saga : boolean, optional
Whether to use the SAGA algorithm or the SAG algorithm. SAGA behaves
better in the first epochs, and allow for l1 regularisation.
Returns
-------
coef_ : array, shape (n_features)
Weight vector.
n_iter_ : int
The number of full pass on all samples.
warm_start_mem : dict
Contains a 'coef' key with the fitted result, and possibly the
fitted intercept at the end of the array. Contains also other keys
used for warm starting.
Examples
--------
>>> import numpy as np
>>> from sklearn import linear_model
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> X = np.random.randn(n_samples, n_features)
>>> y = np.random.randn(n_samples)
>>> clf = linear_model.Ridge(solver='sag')
>>> clf.fit(X, y)
... #doctest: +NORMALIZE_WHITESPACE
Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='sag', tol=0.001)
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> clf = linear_model.LogisticRegression(
... solver='sag', multi_class='multinomial')
>>> clf.fit(X, y)
... #doctest: +NORMALIZE_WHITESPACE
LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1, max_iter=100,
multi_class='multinomial', n_jobs=None, penalty='l2',
random_state=None, solver='sag', tol=0.0001, verbose=0,
warm_start=False)
References
----------
Schmidt, M., Roux, N. L., & Bach, F. (2013).
Minimizing finite sums with the stochastic average gradient
https://hal.inria.fr/hal-00860051/document
Defazio, A., Bach F. & Lacoste-Julien S. (2014).
SAGA: A Fast Incremental Gradient Method With Support
for Non-Strongly Convex Composite Objectives
https://arxiv.org/abs/1407.0202
See also
--------
Ridge, SGDRegressor, ElasticNet, Lasso, SVR, and
LogisticRegression, SGDClassifier, LinearSVC, Perceptron
"""
if warm_start_mem is None:
warm_start_mem = {}
# Ridge default max_iter is None
if max_iter is None:
max_iter = 1000
if check_input:
X = check_array(X, dtype=np.float64, accept_sparse='csr', order='C')
y = check_array(y, dtype=np.float64, ensure_2d=False, order='C')
n_samples, n_features = X.shape[0], X.shape[1]
# As in SGD, the alpha is scaled by n_samples.
alpha_scaled = float(alpha) / n_samples
beta_scaled = float(beta) / n_samples
# if loss == 'multinomial', y should be label encoded.
n_classes = int(y.max()) + 1 if loss == 'multinomial' else 1
# initialization
if sample_weight is None:
sample_weight = np.ones(n_samples, dtype=np.float64, order='C')
if 'coef' in warm_start_mem.keys():
coef_init = warm_start_mem['coef']
else:
# assume fit_intercept is False
coef_init = np.zeros((n_features, n_classes), dtype=np.float64,
order='C')
# coef_init contains possibly the intercept_init at the end.
# Note that Ridge centers the data before fitting, so fit_intercept=False.
fit_intercept = coef_init.shape[0] == (n_features + 1)
if fit_intercept:
intercept_init = coef_init[-1, :]
coef_init = coef_init[:-1, :]
else:
intercept_init = np.zeros(n_classes, dtype=np.float64)
if 'intercept_sum_gradient' in warm_start_mem.keys():
intercept_sum_gradient = warm_start_mem['intercept_sum_gradient']
else:
intercept_sum_gradient = np.zeros(n_classes, dtype=np.float64)
if 'gradient_memory' in warm_start_mem.keys():
gradient_memory_init = warm_start_mem['gradient_memory']
else:
gradient_memory_init = np.zeros((n_samples, n_classes),
dtype=np.float64, order='C')
if 'sum_gradient' in warm_start_mem.keys():
sum_gradient_init = warm_start_mem['sum_gradient']
else:
sum_gradient_init = np.zeros((n_features, n_classes),
dtype=np.float64, order='C')
if 'seen' in warm_start_mem.keys():
seen_init = warm_start_mem['seen']
else:
seen_init = np.zeros(n_samples, dtype=np.int32, order='C')
if 'num_seen' in warm_start_mem.keys():
num_seen_init = warm_start_mem['num_seen']
else:
num_seen_init = 0
dataset, intercept_decay = make_dataset(X, y, sample_weight, random_state)
if max_squared_sum is None:
max_squared_sum = row_norms(X, squared=True).max()
step_size = get_auto_step_size(max_squared_sum, alpha_scaled, loss,
fit_intercept, n_samples=n_samples,
is_saga=is_saga)
if step_size * alpha_scaled == 1:
raise ZeroDivisionError("Current sag implementation does not handle "
"the case step_size * alpha_scaled == 1")
num_seen, n_iter_ = sag(dataset, coef_init,
intercept_init, n_samples,
n_features, n_classes, tol,
max_iter,
loss,
step_size, alpha_scaled,
beta_scaled,
sum_gradient_init,
gradient_memory_init,
seen_init,
num_seen_init,
fit_intercept,
intercept_sum_gradient,
intercept_decay,
is_saga,
verbose)
if n_iter_ == max_iter:
warnings.warn("The max_iter was reached which means "
"the coef_ did not converge", ConvergenceWarning)
if fit_intercept:
coef_init = np.vstack((coef_init, intercept_init))
warm_start_mem = {'coef': coef_init, 'sum_gradient': sum_gradient_init,
'intercept_sum_gradient': intercept_sum_gradient,
'gradient_memory': gradient_memory_init,
'seen': seen_init, 'num_seen': num_seen}
if loss == 'multinomial':
coef_ = coef_init.T
else:
coef_ = coef_init[:, 0]
return coef_, n_iter_, warm_start_mem
|